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Analysis on Asymmetric Tail Dependence
of Portfolio Returns
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We use the generalized Pareto distribution and the copula to analyze the
impact of asymmetric tail dependence on the risk measures. Simulation
results show that the risk measures with symmetric tail dependence
underestimate those with asymmetric tail dependence. We also quantify the
superiority in the portfolio returns from characterizing the asymmetric tail
dependence. The returns of the optimal portfolios from the asymmetric
marginals are higher than the returns of the optimal portfolios from the
symmetric marginals in the majority of the cases. A caution needs to be
exercised in concluding that characterizing the asymmetric dependence in the
process of modeling the marginal distributions seems to have an impact on
the performance of the optimal portfolio due to the statistical significance of
the rate differentials.
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|. Introduction

The mean-variance framework assumes symmetric marginal distributions
and symmetric dependence between marginal distributions. Departures from
symmetricity of the multivariate distribution of portfolio returns have impacts
on optimal portfolio choice and risk management. The Arrow-Pratt’'s risk
aversion of investors intuitively allude to the existence of conditional skewness
and asymmetric dependence structures. Against a backdrop of these
assertions, a line of research has been devoted to analyzing the impact of
conditional skewness on optimal portfolio choice. Harvey and Siddique (2000)
show that non-elliptical reciprocity of the joint distribution at both extremes
would render the discount factor in the pricing kernel to be nonlinear. Harvey
and Siddique (1999) suggest controlling for skewness to address time-varying
conditional volatility and asymmetric dependence at both ends. The
contribution due to Harvey and Siddique (1999) enlightens the importance of
conditional skewness in analyzing optimal portfolio choice.

Recent advancement has been made in modeling conditional skewness and
asymmetric dependence at the same time. It is proved to be convenient to
employ the copula methodology in describing the interdependence structures
of the portfolio independently from the marginals of the individual assets.
Patton (2004) shows that the mean-variance framework for portfolio selection
would not work when the multivariate normality assumption is at odds by the
data. Patton (2004) analyzes the asset allocations decisions using copulas when
there are asymmetries in the tail area dependence. Patton (2004) analyzes
portfolio performance by comparing the realized returns of the portfolio from
a bivariate normal copula and the other from a time-varying copula

distribution. The gains from competing portfolios are measured by the rate of
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return differentials between the portfolio strategies. Zhu and Galbraith (2010)
employ the asymmetric Student t dynamic conditional score model to control
for the asymmetric dependence in the tails of the distributions. The
convenience of this approach is that deviations from non-skewness of the
multivariate distributions are often taken care of in the process of modeling
asymmetric tail dependence. de Roon and Karehnke (2017) develop a skewed
distribution from a mixture of two normal distributions and show how
skewness has an impact on risk metrics and portfolio choice. This approach
evaluates the risk measures based on the calibrated analytical formulas from
the normal density. While the procedure due to de Roon and Karehnke (2017)
to estimate the risk measures and solve for the optimal portfolio weight from
the expected utility maximization is intuitive, their methodology has some
restrictive features in it. That is, the skewed distribution in their work is
created by combining two normal distributions and is sometimes intractable
due to non-invertibility of the normal distribution. Thiele (2020) presents a
parametric model based on the asymmetric Student t distribution due to Zhu
and Galbraith (2010) combined with the dynamic conditional score procedure.
The asymmetric Student t dynamic conditional score model is similar to the
skewed t distribution due to Hansen (1994) in the sense that a shape parameter
governs skewness. However, the asymmetric Student t distribution is capable of
controlling for different thickness between the left and right tail. Armed with this
new approach, Thiele (2020) analyzes the impact of asymmetric tail dependence
on optimal portfolio choice. Also, the economic gains from modeling asymmetric
tail dependence with the asymmetric Student t distribution are numerically
approximated.

In this paper, we combine marginal distributions for individual assets and

copula distributions for dependence structure to form multivariate distribution
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for market index portfolio returns. The marginal distributions are designed to
represent the difference in tail thickness. The copula distributions are chosen
to reflect asymmetric tail dependence. The aim of this paper is two folds. First,
we use the generalized Pareto distribution and copula distribution to present
the impact of asymmetric tail dependence and fat-tailed behavior on the risk
measures. Second, we quantify economic gains from modeling asymmetric tail
dependence of the market index returns. We evaluate the rate of return
differentials between the optimal portfolios from the asymmetric Student t and
asymmetric t distributions against the skewed t distribution.

The remainder of the paper proceeds as follows. Section 2 briefly describes
the asymmetric Student t model introduced by Thiele (2020). Section 3

presents our empirical results. Section 4 concludes the discussion.

I1. Modeling

We employ a conditional distribution with the asymmetric Student

t-distributed residuals for the market index returns:

vy, =u+te, &=0,2, t=12, 1T, (1)

2~ (0, VL,V p)s

where u is the mean, o, is the time-varying standard deviation, and z, is
distributed to asymmetric Student t with shape parameters, «,v;, vp. The
parametric model for the asymmetric Student t-distributed market index

returns is:

f(yt : cht’avvbvﬁ)
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While the parameter o governs the skewness of the distribution, the
parameters v; and vy represent the thickness of the left and right tail,
respectively. Therefore, the function M separates out non-symmetry of the
distribution into skewness and the difference in the tail-thickness on each
side. The skewness parameter « of the asymmetric Student t distribution does
not suffice in explaining the difference in the tail-thickness of the distribution,
because it can be shown that the tails on each extreme still fade down at the
same rate with a# 0.5. So, irrespective of the value of «, we can
parameterize the different rates of decay in the left and right tails of the
asymmetric Student t distribution using the parameters v; and vg. Zhu and
Galbraith (2010) show that « # 0.5 can be derived from the symmetric Student
t distribution, with v; = vp.

Thiele (2020) applies the first-order dynamic conditional score procedure in
order to accommodate a time-varying volatility on the asymmetric Student t

distribution in equation (2). To that end, we characterize A, from the
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transformation function, o, = exp(?xt) to insure non-negative time-varying

standard deviation as the following dynamic equation:

AN =6+0N | tKrs 3)
. p [ ) 21nLtj 16 InZ, w
s, = Hu, = 4= ,
t t%t t—1 a }\.? a >\'t
0 InZ,
where u, = FEN denotes the contribution of the time-varying volatility to
t

the log-likelihood function, and #, = is the inverse of the

2°InL,
el
t

information matrix to rescale the innovations. u, and H, can be expressed

as follows:
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The equation (5) specifies how the squared deviations from the mean,

have an impact on the volatility. The structure of equation (5)

*

yr—
200 0y

shows that the thinner the tails of the distribution(v,, v get bigger), the bigger
the u, in equation (5) and s, in equation (4), respectively. So, when the tails of

the distribution are very thin, the occurrence of the extreme value of y, is very
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rare and gets bigger weight in calculating the time-varying volatility in the
next period.

The volatility dynamics in equation (3) can accommodate leverage effects by

adding the term, s sign(—y,_,)(s,_,+1),x > 0 in equation (7):
N :8+(b7\t,1+K5t,1+K*sign(—yt,1)(st,1+1), 7)

where x> 0. So, when there is a negative return in period t-1 (i.e.
y;—1 < 0), the time-varying volatility gets bigger in period t. Equations (1) - (7)
completes the asymmetric Student t distribution dynamic conditional score

model with leverage effect.

lll. Estimation

1. Data

The data for Korea (Korea Composite Stock Price Index, KOSPI), U.S. (S&P 500
Index, S&P 500), Hong Kong (Hang Seng Index, HIS), UK (Financial Times Stock
Exchange 100, FTSE 100), China (Shanghai Composite Index, SCI), and Japan
(Nikkei 225, NK225) are collected. The daily stock market index return data
consists of 2,998 observations and the data spans from January 4, 2007 to July 9,
2021. According to Table 1, all indices returns are leptokurtic, and the five

market indices except for the Hang Seng Index returns are negatively skewed.
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(Table 1) Descriptive Statistics

min 1st quantile median 3rd quantile max
KOSPI -11.64 -0.54 0.07 0.68 11.24
S&P 500 -13.47 -0.42 0.08 0.63 10.33
Hang Seng -14.70 -0.71 0.04 0.80 16.80
FTSE 100 -10.14 -0.56 0.03 0.63 10.46
Shanghai -12.83 -0.72 0.05 0.80 14.19
Nikkei 225 -12.92 -0.71 0.06 0.85 13.23
mean Standard dev. skewness kurtosis
KOSPI 0.03 1.39 -0.59 13.40
S&P 500 0.04 1.42 -0.75 16.20
Hang Seng 0.01 1.68 0.15 15.79
FTSE 100 0.00 1.32 -0.17 12.17
Shanghai 0.01 1.80 -0.47 9.48
Nikkei 225 0.02 1.67 -0.61 11.76

Note: The data for Korea (Korea Composite Stock Price Index, KOSPI), U.S. (S&P 500 Index,
S&P 500), Hong Kong (Hang Seng Index, HSI), UK (Financial Times Stock Exchange
100, FTSE 100), China (Shanghai Composite Index, SCI), and Japan (Nikkei 225,
NK225) are used for the descriptive statistics. The daily stock market index data
consists of 2,998 observations and the data spans from January 4, 2007 to July 9, 2021.
According to Table 1, all indices’ returns are leptokurtic, and the five market indices
except for the Hang Seng Index returns are negatively skewed.

The conjecture that negative shocks induce more volatility than positive shocks
can be substantiated by the parameter estimates of the EGARCH model. From the
L E—i| TV€—i | &

EGARCH model of the form h, = a, + Z%%JF Eb‘jht, j» where

i=1 t—i =1

h, =logo?, the leverage effect coefficient v, is estimated at -0.366 with the
p-value of 0.000 for the KOSPL. For other indices, the leverage effect coefficient
v; is estimated at -0.722 (p-value=0.000), -0.402 (0.000), -0.999 (0.000), -0.011
(0.690), and -0.556 (0.000) for the S&P 500, Hang Seng Index, FTSE 100,
Shanghai Composite Index, and the Nikkei 225, respectively. Except for the

Shanghai Composite Index returns, the leverage effects are prevalent in the

global stock market index returns.
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2. Tail Asymmetry

We report the parameter estimates of the four models, the asymmetric
Student t dynamic conditional score, asymmetric t dynamic conditional score,
skewed t dynamic conditional score, and t dynamic conditional score models
with the leverage effect in Table 2. We use the maximum likelihood procedure
and the Newton-Raphson algorithm for the numerical maximization of the
Hessian matrix in computing the covariance matrix of the model parameters.
The log-likelihood values (InZ) are reported in the last column, and the
standard errors for the parameter estimates are in parentheses. Using t-statistics
from the parameter estimates of ¥ and the standard errors in parentheses

reported in Table 2, the null hypotheses of no leverage effect (x* = 0) in the

conditional volatility are rejected at a 1% level of significance for the
asymmetric Student t, asymmetric t, skewed t, and the t distribution models
except for the SCI. It is apparent that the conditional volatilities are highly
persistent from the parameter estimate ¢ in equation (3) for all six indices and
the autocorrelation functions in Figure 1. Table 3 reports the Bayesian
information criterion for the asymmetric Student t, asymmetric t, skewed t, and
t models using the six indices. For the five market indices, the Bayesian
information criteria are minimized when the asymmetric Student t distributions
are used. The BIC for the Hang Seng Index is minimized with the skewed t
distribution, however, the BICs are almost identical for the asymmetric Student t
and the skewed t distributions. The parameter estimates of « from the
asymmetric Student t model are reported in Table 2. The parameter estimates of
« for the KOSPI and SCI are 0.5, and those for the S&P 500, HSI, FTSE 100, and
the NK225 are close to 0.5. For all indices, removing skewness is evidenced

from the statistically significant parameter estimates of o = 0.5.
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Judging from the parameter estimates of v; and v, all market indices
returns have thicker left tails and thinner right tails than the normal. From the
estimation results, we can conclude that the asymmetric Student t distribution
is capable of controlling for different thickness between the left and right tail.
Since the skewed t and the t distributions are assumed to have the symmetric

tails, on the other hand, those two models are mis-specified.

(Table 2) Model Estimation Results

*

KOSPI § o K a K vy Vp M InL
Asymmetric| -0.001 0.991 0.053 0.500 0.026 3.577 9.011 0.062 4426
Student t |(0.001) (0.003) (0.006) (0.013) (0.004) (0.431) (1.279) (0.032) °
Asymmetric| -0.002  0.988  0.057 ) 0.027 3.612 889 0053 ,

t (0.001) (0.004) (0.007) (0.004) (0.352) (0.604) (0.004)
-0.003 0.989 0.057 0.536 0.029 5.126 ) 0.127
Skewed t | (5 001) (0.004) (0.007) (0.011) (0.005) (0.498) 0027 %84
(0.001) (0.002) (0.007) 0.004) (2.227) (0.0100

S&P 500 & ) K a K v Vp m InL
Asymmetric| -0.009 0.971 0.085 0.515 0.075 3.541 9501 0.108 4125
Student t |(0.003) (0.005) (0.009) (0.012) (0.006) (0.321) (2.104) (0.023)
Asymmetric| -0.008 0.968  0.085 ) 0.074 3.377 10.814 0.082 4134

t (0.003) (0.004) (0.009) (0.006) (0.279) (0.848) (0.013)
Skewed ¢ | 70011 0973 0.085 0.541 0.076 4.782 _ 0.145 4112
(0.003) (0.005) (0.008) (0.010) (0.007) (0.403) 0.021)
. -0.012 0.967 0.085 . 0.075 4.504 . 0.078 11y
(0.003) (0.005) (0.008) 0.007) (0.357) (0.013) ~

HSI § ) K a K" vy Vp m InL
Asymmetric| 0.001 098 0.051 0515 0.025 5.033 6.618 0.084 5114
Student t |(0.001) (0.004) (0.007) (0.014) (0.004) (0.694) (1.128) (0.042) =
Asymmetric| 0.001 0.985 0.051 B 0.025 4.673 7.204 0.050 5115

t (0.001) (0.004) (0.007 (0.004) (0.545) (0.418) (0.021) =
Skewed ¢ | 0001 0987 0051 0.528 0.026  5.682 . 0.123 5115
ewed T 0.001) (0.004) (0.007) (0.011) (0.005) (0.587) 0.036) >
. 0.001 0.985 0.059 ) 0.025 5.607 _ 0.044 5118
(0.001) (0.004) (0.007) (0.005) (0.571) 0.021) =
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FTSE 100 | 6 ) K a K vy Vp m InL

Asymmetric| -0.003 0.983 0.047 0.506 0.054 4.386 8.740 0.033 4326
Student t |(0.002) (0.004) (0.007) (0.014) (0.005) (0.522) (1.893) (0.032)

Asymmetric| -0.003 0.982  0.047 _ 0.054 4.271 9.084 0.025 4327
t (0.002) (0.004) (0.007) (0.005) (0.443) (0.637) (0.015) =

Skewed ¢ | 70-005 0.986 0.047 0.535 0.055 5.608 . 0.092 4330
ewed T 0.001) (0.004) (0.007) (0.010) (0.005) (0.548) ©0.026) *

. -0.005 0.981 0.046 . 0.054 5.503 B 0.020 336
(0.002) (0.004) (0.007) (0.005) (0.5206) (0.015

scl § ) K a K vy Vp M InL

Asymmetric| 0.001 0.999 0.049 0.500 0.002 3.441 4.617 0.040 5291
Student t |(0.001) (0.001) (0.005) (0.013) (0.003) (0.398) (0.588) (0.035) ~°

Asymmetric| 0.001 0.999 0.049 _ 0.003 3.447 4.617 0.039 5,291

t (0.001) (0.001) (0.006) (0.003) (0.358) (0.198) (0.000)

Skewed ¢ | 0001 0.999 0.049 0.512 0.002 3.929 . 0.068 5203
(0.002) (0.004) (0.007) (0.010) (0.004) (0.309) 0.029)

. 0.001 0.999 0.049 . 0.002  3.906 . 0.040 5204
(0.002) (0.004) (0.007) (0.004) (0.302) 0.019) =

NK225 & ) K a K vy Vp m InL

Asymmetric| 0.005 0.962 0.076 0.512 0.052 4.895 8.830 0.085 5165
Student t |(0.003) (0.007) (0.008) (0.014) (0.006) (0.608) (1.904) (0.047) ~

Asymmetric| 0.005 0.962 0.075 _ 0.051 4.666 9.726 0.055 5.165
t (0.003) (0.008) (0.009) (0.006) (0.515) (0.738) (0.021) ~

Skewed ¢ | 0-003 0.964 0.077 0.530 0.052 6.119 . 0.131 5169
(0.002) (0.008) (0.009) (0.011) (0.006) (0.655) 0.037)

. 0.004 0962 0.074 . 0.051 5.919 ) 0.046 5.173
(0.002) (0.008) (0.009) (0.006) (0.608) (0.021) ~

Note: We report the parameter estimates of the four models with leverage effect and the

log-likelihood values (InZ) in the table. The standard errors are in parentheses. As
reported in the sixth column, the null hypothesis of no leverage effect (x° =0) in the
conditional volatility is rejected at a 1% level of significance for all models except for
the SCI. To reflect the persistency and leverage effect of the conditional volatility, we
estimate the asymmetric Student t, asymmetric t, skewed t, and the t distribution
models. The parameter estimates of @ for the KOSPI and SCI are 0.5, and those for
the S&P 500, HSI, FTSE 100, and the NK225 are close to 0.5. For all indices, removing
skewness is evidenced from the statistically significant parameter estimates of a=0.5.
As the parameter estimates of v, and v, show, all market indices returns have thicker
left tails and thinner right tails than the normal. The estimation results in the table
show that the asymmetric Student t distribution is capable of controlling for different
thickness between the left and right tail.
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(Figure 1) Autocorrelation Functions of Squared Index Returns
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Note: The squared returns for the six market indices exhibit significant autocorrelation. This
indicates that the conditional volatilities are persistent. It is apparent that the

conditional volatilities are highly persistent from the parameter estimate ¢ for all six
indices reported in Table 2 and the autocorrelation functions in the above figures.

(Table 3) Model Selection Criterion

KOSPI S&P HSI FTSE SCI NK225
Asymmetric Student t | 8,916.3 | 8,286.6 | 10,293 | 8,716.6 | 10,647 | 10,396
Asymmetric t 8,907.4 | 8,278.1 | 10,287 | 8,709.0 | 10,639 | 10,388
Skewed t 8,924.3 | 8,306.9 | 10,286 | 8,716.1 | 10,642 | 10,395

t 9,247.2 | 8,961.5 | 10,571 | 9,024.2 | 10,931 -

Note: The table reports the Bayesian information criterion for the asymmetric Student t
dynamic conditional score, asymmetric t, skewed t, and t models using the six market
indices. The tail asymmetries of the data are best captured by the asymmetric t model
except for the Hong Kong Hang Seng Index. For the five market indices, removing

skewness is evidenced from the statistically significant parameter estimates of o = 0.5.

Figure 2 shows qg-plots for the standardized residuals from the skewed t
dynamic conditional score and asymmetric Student t dynamic conditional score
models against a reference distribution with symmetric tails. Most of the qg-plots
from the asymmetric Student t dynamic conditional score model do not deviate
much from a reference distribution. However, the qg-plot from the asymmetric
Student t dynamic conditional score model for the Shanghai Composite Index
returns suggests that the tails of the asymmetric Student t dynamic conditional

score model are still fatter than the tails of the symmetric-tailed distribution.
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Note: The figure shows qq-plots for the standardized residuals from the estimated skewed t
dynamic conditional score and asymmetric Student t dynamic conditional score models
against a reference distribution with symmetric tails. For each index, the upper panel shows
the qq-plots of the standardized residuals from the estimated skewed t dynamic conditional
score model and the lower panel graphs the qg-plots of the standardized residuals from the
estimated asymmetric Student t model. The qg-plot from the asymmetric Student t dynamic
conditional score model for the Shanghai Composite Index returns suggests that the tails of
the asymmetric Student t dynamic conditional score model are still fatter than the tails of
the symmetric-tailed distribution. For other indices, the qg-plots prove that the asymmetric
Student t dynamic conditional score model estimation addresses the fat-tailed issues.
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3. Risk Measures

In this section, we analyze the impact of tail shape on the risk measures. If
the tails of the marginal distributions of the market index returns are thicker
than normal, we would underestimate the risk measures by assuming that the
marginal distributions are normally distributed. We use the generalized Pareto
distribution, GPD henceforth, as the fully parametric model for the tails of the
marginal distribution.

Let X;,X,,.. be independently identically distributed losses with an
unknown CDF F. Then, the conditional probability of the excesses over a
threshold v can be expressed as follows:

(y+u)— Flu)

EF (y)=Pr{iX—u< ylX>u}l= £ 1= Fa)

y>0

Embrechts et al. (1997) show that the generalized Pareto distribution is the close

approximation to the above excess distribution with a positive function 3(u).

1—(1—|—ﬁ€(‘z))2 for &£€# 0 |

1—exp|—

G&ﬁ(u)(y): B(u)>0

ﬁ%ly)) for £€=0

defined for y > 0 when €2 0 and0< y< B(u)¢ when £ <0.

The most daunting task in the maximum likelihood estimation of the GPD
model is to choose the optimal threshold value where the marginal
distribution starts to fade out to the tail area. Goldie and Smith (1987) and Hall
(1990), Danielsson and de Vries (1998), Danielsson et al. (2001) choose the
optimal threshold value by using a subsample bootstrap procedure.

To show how tail thickness affects the risk measure estimation, however, the

sample mean excess function plot due to McNeil and Saladin (1997), McNeil
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and Frey (2000) and Zivot and Wang (2006) would be sufficient. The bias and
the efficiency involved in the estimation of the GPD model are dependent on
the number of observations pertained to the tail area and the center of the
marginal distribution. There is no clear-cut solution to this problem.

We choose 0.9% and -0.9% as the upper tail and right tail area threshold
values and estimate the GPD marginals based on the excesses over threshold
values. For the KOSPI, we use 18.26% of the 2,995 observations with the
threshold value of 0.9% to estimate the upper tail parameter estimates of the
GPD model. Also, we use 16.76% of the observations with the threshold value
of -0.9% to estimate the lower tail parameter estimates of the GPD model. The
tail shape parameters on both sides with the KOSPI and S&P 500 are reported
in Tables 4 and 5. For the other four indices, we do not report the estimation

results to save space, however, the results are available upon request.

(Table 4) GPD Model Estimation with the KOSPI

Upper Tail Estimate with the Threshold at 0.9% (18.26% of observations)

Value Standard Error t-ratio
0.196 0.049 4.02
0.709 0.046 15.54
Lower Tail Estimate with the Threshold at =0.9% (16.76% of observations)
Value Standard Error t-ratio
0.224 0.055 4.06
0.854 0.060 14.23

Note: The GPD model estimation results are reported in the table. We choose 0.9% and
-0.9% as the upper tail and right tail area threshold values and estimate the GPD
marginals based on the excesses over threshold values. For the KOSPI, we use 18.26%
of the 2,995 observations with the threshold value of 0.9% to estimate the upper tail
parameter estimates of the GPD model. Also, we use 16.76% of the observations with
the threshold value of -0.9% to estimate the lower tail parameter estimates of the GPD
model. The tail shape parameters on both sides with the KOSPI are reported in the
table. For the other four indices, we do not report the estimation results to save
space, however, the results are available upon request.
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(Table 5) GPD Model Estimation with the S&P 500
Upper Tail Estimate with the Threshold at 0.9% (17.23% of the data)

Value Standard Error t-ratio
0.317 0.058 5.44
0.636 0.046 13.94
Lower Tail Estimate with the Threshold at -0.9% (14.89% of the data)
Value Standard Error t-ratio
0.182 0.054 3.38
1.010 0.072 14.03

Note: The GPD model estimation results are reported in the table. ut solution to this
problem. We choose the same threshold values as the KOSPI. For the S&P 500, we use
17.23% of the 2,995 observations to estimate the upper tail parameter estimates of
the GPD model. Also, we use 14.89% of the observations to estimate the lower tail
parameter estimates of the GPD model. The tail shape parameters on both sides with
the S&P 500 are shown. For the other four indices, we do not report the estimation
results to save space, however, the results are available from the author upon request.

From the statistically significant positive estimates of the tail shape
parameter &, we can determine that the left tails and right tails of the KOSPI
and S&P 500 have fat-tailed distributions. The tail shape parameters ¢ for the

HSI are 0.16 (t-ratio 4.17) and 0.11 (17.51), for the FTSE 100 are 0.24 (4.44)

and 0.13 (2.58), for the SCI are 0.06 (1.63) and 1.13 (18.90), and for the NK225

are 0.09 (2.45) and 0.15 (3.55). Therefore, except for the upper tail of the SCI,
we can conclude that the upper tails and lower tails of the six market indices
returns have fat tails on both sides of the marginal distributions.

We consider fifteen pairs of one-period investment in two market indices.

For each portfolio with expected return R and the joint distribution function

Fp, we define two risk measures VaR and ES for a given level of loss:

VaR,= F}(R) ®
ES,=E[— R— R>VaR,] ©

We generate random simulations from the joint distribution function # and
calculate numerical approximations to the VaR and E£S. The KOSPI daily
returns are distributed to the GPD as shown in Table 4 and the S&P 500 daily
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returns are distributed to the GPD in Table 5. We use the Clayton copula with

1

the correlation parameter 6, Clu,v;0)= [w %40 %=1] ° where 0> 0 that
1

reflects the asymmetric lower tail dependence parameter T = 2 9 and the
upper tail dependence parameter 17 = 0. We also use the Frank copula which
does not exhibit lower or upper tail dependence. The rationale behind the
choice of the Clayton copula lies in the tail asymmetry, while the Frank copula
and Gaussian copula (for the case of correlation coefficient { 1) do not exhibit
lower or upper tail dependence. In spite of the dependence structure between
the marginal distributions of copulas, the Gaussian copula is the most
generally used copula. We analyze the impact of the dependence structures of
copulas on the risk measures using the Clayton, Gaussian, and Frank copula.
According to Table 6, the portfolio that invests 50% of wealth in KOSPI and
50% in S&P 500 could make -1.25% loss or more in one trading day with 5%
probability. If that event occurs, then, the expected loss could be as low as
-2.14%. When ¢=0.99, the VaR and ES are calculated as -2.62% and -3.84%.
To compare this result with symmetric tail dependence, we use the normal
copula. For a given level of loss ¢=0.95, the VaR and ES are calculated as
-1.16% and -1.82%. That is, the portfolio that invests 50% of wealth in KOSPI
and 50% in S&P 500 could make -1.16% loss or more in one trading day with
5% probability. If the event occurs, then, the expected loss could be as low as
-1.82%. When ¢ = 0.99, the VaR and ES are calculated as -2.22% and -2.98%.
Table 6 also shows numerical approximation to the VaR and ES when the
portfolios are composed of a pair of market indices. For a given level of loss
q=0.95, the VaR ranges from -1.25% to -1.44%, and the ES ranges from -
2.54% to -2.91% when the Clayton copula is used to describe the dependence
structure of the portfolio returns. The important fact that we can read off

from the table is that the risk measures are underestimated when we assume
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that the dependence structures of the portfolios are characterized by the
Frank copula. The Frank copula assumes no lower or upper tail dependence.
The Gaussian copula also tends to underestimate the risk measures compared
to the Clayton copula. It should be noted from this simulation that modeling
the dependence structures of the multivariate portfolio returns is important in

evaluating and managing risk.

(Table 6) VaR and ES by Simulation with the GPD Margins and the
Parametric Copulas

TaR ES
KOPSI and S&P 500 95% 99% 95% 99%
Gaussian -1.16 -2.22 -1.82 -2.98
Frank -1.13 -2.02 -1.69 -2.65
Clayton -1.25 -2.62 -2.14 -3.84
VaR ES
KOSPI and HSI 95% 99% 95% 99%
Gaussian -1.32 -2.38 -2.01 -3.19
Frank -1.13 -2.02 -1.69 -2.65
Clayton -1.42 -2.84 -2.34 -4.05
TaR ES
KOSPI and FTSE 100 95% 99% 9% 99%
Gaussian -1.21 -2.20 -1.83 -2.92
Frank -1.17 -2.01 -1.70 -2.60
Clayton -1.27 -2.54 -2.10 -3.65
VaR ES
KOSPI and SCI 95% 99% 95% 99%
Gaussian -1.36 -2.48 -2.07 -3.33
Frank -1.31 -2.28 -1.93 -3.00
Clayton -1.44 -2.91 -2.42 -4.30
TaR ES
KOSPI and NK225 0% 9% % 9%
Gaussian -1.33 -2.37 -2.00 -3.17
Frank -1.30 -2.22 -1.89 -2.88
Clayton -1.43 -2.82 -2.36 -4.13

Note: We use the Clayton copula and the Frank copula along with the GPD estimation results
in Tables 4 and 5 to approximate the VaR and ES. The risk measures with the
Gaussian, Frank, and the Clayton copula are reported in each panel. The risk
measures are underestimated when we assume that the dependence structures of the
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portfolios are characterized by the Gaussian copula or the Frank copula. The Frank
copula assumes no lower or upper tail dependence. The Gaussian copula also tends to
underestimate the risk measures compared to the Clayton copula. Each panel presents
the simulation results from the portfolio which consists of a pair of market index, that
is, KOSPI and S&P 500, KOSPI and HIS, KOSPI and FTSE 100, KOSPI and SCI, and
KOSPI and NK225, respectively. For the rest of the ten pairs of portfolios, we do not
present the results to save space.

4. Portfolio Performance Evaluation

The aim in this section is to measure the rate of return differentials that
investors can increase by taking the alternative optimal portfolio choice that
takes asymmetries and/or skewness of the distribution into account. That is,
we quantify the difference in the rate of returns from characterizing the
asymmetric tail dependence of the bivariate market index portfolio returns.
To the best of our knowledge, Thiele (2020) suggests evaluating the rate of
return gains from selecting a portfolio that takes asymmetric tail dependence
into account for the first time. Following Thiele’s procedure, we generate the
realized returns of the optimal portfolios from the asymmetric tail dependence
models and the skewed t models and calculate the rate of return differentials
between the two models. The estimation window consists of 1,000 trading days
and moves forward by five days in each step of the procedure. We repeat the
simulations 100,000 times. The investor can choose the optimal portfolios that
maximize the expected utility. The optimal portfolios are chosen from the
four combinations of strategies. That is, the marginal distributions for
individual index returns are assumed to be distributed to the asymmetric
Student t and the asymmetric t. The dependence structures of the portfolios
are selected from the Frank copula and the Clayton copula. The rate of return
differentials are calculated against the skewed t.

The positive rate of return differentials reported in Tables from 7 to 10

mean that the returns of the optimal portfolios of the asymmetric Student t
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marginals or the asymmetric t marginals coupled with the Frank copula or the
Clayton copula are higher than the returns of the optimal portfolios of the
skewed t marginals combined with the Frank copula or the Clayton copula.
The statistics in boldface are statistically significant at a 10% significance level.
According to Tables from 7 to 10, the returns of the optimal portfolios from
the asymmetric Student t or the asymmetric t marginals are higher than the
returns of the optimal portfolios from the skewed t marginals in most cases
irrespective of the copula distribution. In twelve cases out of fifteen from
Table 7, for example, the rate of return differentials are positive. However, the
positive rate of return differentials are statistically significant only in two cases
with boldface numbers. On the other hand, the positive rate of return
differentials reported in Table 8 mean that the returns of the optimal
portfolios of the asymmetric t marginals and the Frank copula are higher than
the returns of the optimal portfolios of the skewed t marginals and the Frank
copula. The statistics in boldface are statistically significant at a 10%
significance level. In twelve cases, the rate of return differentials are positive.
In seven cases with boldface numbers, the positive rate of return differentials
are statistically significant. From Table 10, we find four cases of negative rate
differentials. The negative rate differentials in Table 10 show that the returns
of the optimal portfolios from the asymmetric t marginals and the Clayton
copula are lower than the returns of the optimal portfolios from the skewed t
marginals and the Clayton copula. However, the negative rate differentials are
insignificant. For the rest eleven cases, the returns of the optimal portfolios
from the asymmetric t marginals and the Clayton copula are higher than the
returns of the optimal portfolios from the skewed t marginals and the Clayton
copula. Furthermore, five out of eleven cases, the rate of return differentials

are significantly positive. From the empirical results reported in Tables 7-10,
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we can conclude that characterizing the asymmetric dependence in the
process of modeling the marginal distributions and the copula functions seems
to have a positive impact on the performance of the optimal portfolio. The
positive impacts on the performance of the optimal portfolios are conspicuous
when we employ the asymmetric t in characterizing tail asymmetry. This
finding is in line with the model selection results in Table 3. We find that the
asymmetric t dynamic conditional score model best fits the KOSPI, S&P 500,
FTSE 100, SCI, and the NK225 based on the BIC. A word of caution is in order
with respect to the empirical results reported in Tables from 7 to 10. There are
not many instances that the returns of the optimal portfolios of the
asymmetric Student t marginals or the asymmetric t marginals are lower than
the returns of the optimal portfolios of the skewed t marginals. However, the
positive rate differentials are statistically significant only in seven and four

cases in Tables 8 and 10, respectively.

(Table 7) Asymmetric Student t vs. Skewed t with Frank Copula

S&P 500 HS| FTSE_100 SCl NK225

KoK oo 00 029 01 020
S&P 500 - (8:21) ((1):%) (gjgé) éi??)
HSI - - o) o9 05D
FTSE 100 - - - (é%) (_87935)
SCI - - N h (égg)

Note: We generate the realized returns of the optimal portfolios from the asymmetric
Student t distribution and the skewed t distribution and calculate the rate of return
differentials between the two models. The dependence structures of the portfolios are
selected from the Frank copula and the Clayton copula. The estimation window
consists of 1,000 trading days and moves forward by five days in each step of the
procedure. We repeat the simulations 100,000 times. The positive rate of return
differential reported in the table means that the returns of the optimal portfolios of
the asymmetric Student t marginals and the Frank copula are higher than the returns
of the optimal portfolios of the skewed t marginals and the Frank copula. The
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statistics in boldface are statistically significant at a 10% significance level. In twelve
cases, the rate of return differentials are positive, however, only two cases with
boldface numbers, the positive rate of return differentials are statistically significant.

(Table 8) Asymmetric t vs. Skewed t with Frank Copula

S&P 500 HS FTSE 100 Tl NK225

6.97 .24 458 2.22 181

KOSPI (0.00) (0.85) 0.02) 0.18) 0.28)
1.07 2.64 6.55 2.59

S&P 500 - 0.24) (0.04) ©0.01) 0.07)
oS - - 131 3.35 ~0.54
0.22) 0.12) 0.59)

5.97 052

FTSE 100 - - - _ (060)
- - - - 146

SCI (0.06)

Note: The positive rate of return differentials reported in the table mean that the returns of
the optimal portfolios of the asymmetric t marginals and the Frank copula are higher
than the returns of the optimal portfolios of the skewed t marginals and the Frank
copula. The statistics in boldface are statistically significant at a 10% significance
level. In twelve cases, the rate of return differentials are positive. In seven cases with
boldface numbers, the positive rate of return differentials are statistically significant.

(Table 9) Asymmetric Student t vs. Skewed t with Clayton Copula

S&P 500 HSI FTSE 100 SCl NK225

2.59 -1.64 0.62 -0.25 0.43

KOs 0.05) 0.91) 0.36) 0.56) 0.38)
_ -0.17 0.09 3.49 1.29

S&P 500 (0.55) 0.47) (0.04) 0.14)
1| j j 0.58 0.57 -0.97
0.25) 0.35) (0.80)

0.28 -1.29

FTSE 100 - - - 0.46) 0.83)
. . _ _ 0.05

SCI 0.50)

Note: The positive rate of return differentials reported in the table mean that the returns of
the optimal portfolios of the asymmetric Student t marginals and the Clayton copula
are higher than the returns of the optimal portfolios of the skewed t marginals and the
Clayton copula. The statistics in boldface are statistically significant at a 10%
significance level. In ten cases, the rate of return differentials are positive. Only in two
cases with boldface numbers, however, the positive rate of return differentials are
statistically significant.
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S&P 500 HSI FTSE 100 SCl NK225

5.91 -1.63 3.05 1.78 -0.07

KOSPI 0.00) 0.88) (0.05) (0.19) (0.50)
_ 0.55 0.31 7.01 1.24

S&P 500 (0.33) (0.40) (0.00) 0.22)
1St . . 0.55 1.84 -1.66
0.33) 0.18) 0.82)

B B B 3.46 -0.75

FTSE 100 017 0.65)
_ _ B _ 3.10

SCl (0.09)

Note: The positive rate of return differentials reported in the table mean that the returns of
the optimal portfolios of the asymmetric t marginals and the Clayton copula are
higher than the returns of the optimal portfolios of the skewed t marginals and the
Clayton copula. The statistics in boldface are statistically significant at a 10%
significance level. In eleven cases, the rate of return differentials are positive. In four
cases with boldface numbers, the positive rate of return differentials are statistically
significant.

IV. Concluding Remarks

In this paper, we use the generalized Pareto distribution and the copula
distributions to analyze the impact of asymmetric tail dependence and
fat-tailed behavior on the risk measures. We also quantify the difference in
the rate of returns between the optimal portfolios generated by the
asymmetric Student t distribution and the asymmetric t distribution against the
skewed t distribution. The Clayton copula and the Frank copula which exhibit
only lower tail dependence and no tail dependence respectively are employed.

We consider fifteen pairs of one-period investment in two market indices.
We generate random simulations from the joint distribution function and
calculate numerical approximations to the VaR and ES. Simulation results
show that the risk measures with symmetric tail dependence underestimate

those with asymmetric tail dependence. For the KOSPI returns at a given level
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of loss ¢=0.95, the VaR and ES with symmetric tail dependence
underestimate risk by 7.2% and 15.0%, respectively.

We also quantify the rate of return differentials that investors can get by
taking the asymmetries and/or skewness into account in portfolio selection.
We generate realized returns of the optimal portfolios and calculate the
difference in the rate of returns of the competing portfolios. The optimal
portfolios are chosen under the assumption that marginal distributions for
individual index returns are assumed to be distributed to the asymmetric
Student t and asymmetric t. The dependence structures of the portfolios are
selected from the Frank copula and the Clayton copula. The rate of return
differentials are calculated against the optimal portfolio based on the skewed t
marginal distribution. The returns of the optimal portfolios from the
asymmetric Student t marginals (twelve cases in Table 8) or the asymmetric t
marginals (eleven cases in Table 10) are higher than the returns of the optimal
portfolios from the skewed t marginals irrespective of the copula distribution.
There are not many instances (less than five cases at the maximum in each
Table) that the returns of the optimal portfolios of the asymmetric Student t
marginals or the asymmetric t marginals are lower than the returns of the
optimal portfolios of the skewed t marginals. However, the positive rate of
return differentials are statistically significant only in seven and four cases in
Tables 8 and 10, respectively. It can be important to include the asymmetric
tail dependence in the process of characterizing the marginal distributions of
asset returns to improve the performance of the optimal portfolio, however, a

caution needs to be exercised due to statistical significance.
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