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We use the generalized Pareto distribution and the copula to analyze the 

impact of asymmetric tail dependence on the risk measures. Simulation 

results show that the risk measures with symmetric tail dependence 

underestimate those with asymmetric tail dependence. We also quantify the 

superiority in the portfolio returns from characterizing the asymmetric tail 

dependence. The returns of the optimal portfolios from the asymmetric 

marginals are higher than the returns of the optimal portfolios from the 

symmetric marginals in the majority of the cases. A caution needs to be 

exercised in concluding that characterizing the asymmetric dependence in the 

process of modeling the marginal distributions seems to have an impact on 

the performance of the optimal portfolio due to the statistical significance of 

the rate differentials.
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I. Introduction

The mean-variance framework assumes symmetric marginal distributions 

and symmetric dependence between marginal distributions. Departures from 

symmetricity of the multivariate distribution of portfolio returns have impacts 

on optimal portfolio choice and risk management. The Arrow-Pratt’s risk 

aversion of investors intuitively allude to the existence of conditional skewness 

and asymmetric dependence structures. Against a backdrop of these 

assertions, a line of research has been devoted to analyzing the impact of 

conditional skewness on optimal portfolio choice. Harvey and Siddique (2000) 

show that non-elliptical reciprocity of the joint distribution at both extremes 

would render the discount factor in the pricing kernel to be nonlinear. Harvey 

and Siddique (1999) suggest controlling for skewness to address time-varying 

conditional volatility and asymmetric dependence at both ends. The 

contribution due to Harvey and Siddique (1999) enlightens the importance of 

conditional skewness in analyzing optimal portfolio choice.

Recent advancement has been made in modeling conditional skewness and 

asymmetric dependence at the same time. It is proved to be convenient to 

employ the copula methodology in describing the interdependence structures 

of the portfolio independently from the marginals of the individual assets. 

Patton (2004) shows that the mean-variance framework for portfolio selection 

would not work when the multivariate normality assumption is at odds by the 

data. Patton (2004) analyzes the asset allocations decisions using copulas when 

there are asymmetries in the tail area dependence. Patton (2004) analyzes 

portfolio performance by comparing the realized returns of the portfolio from 

a bivariate normal copula and the other from a time-varying copula 

distribution. The gains from competing portfolios are measured by the rate of 
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return differentials between the portfolio strategies. Zhu and Galbraith (2010) 

employ the asymmetric Student t dynamic conditional score model to control 

for the asymmetric dependence in the tails of the distributions. The 

convenience of this approach is that deviations from non-skewness of the 

multivariate distributions are often taken care of in the process of modeling 

asymmetric tail dependence. de Roon and Karehnke (2017) develop a skewed 

distribution from a mixture of two normal distributions and show how 

skewness has an impact on risk metrics and portfolio choice. This approach 

evaluates the risk measures based on the calibrated analytical formulas from 

the normal density. While the procedure due to de Roon and Karehnke (2017) 

to estimate the risk measures and solve for the optimal portfolio weight from 

the expected utility maximization is intuitive, their methodology has some 

restrictive features in it. That is, the skewed distribution in their work is 

created by combining two normal distributions and is sometimes intractable 

due to non-invertibility of the normal distribution. Thiele (2020) presents a 

parametric model based on the asymmetric Student t distribution due to Zhu 

and Galbraith (2010) combined with the dynamic conditional score procedure. 

The asymmetric Student t dynamic conditional score model is similar to the 

skewed t distribution due to Hansen (1994) in the sense that a shape parameter 

governs skewness. However, the asymmetric Student t distribution is capable of 

controlling for different thickness between the left and right tail. Armed with this 

new approach, Thiele (2020) analyzes the impact of asymmetric tail dependence 

on optimal portfolio choice. Also, the economic gains from modeling asymmetric 

tail dependence with the asymmetric Student t distribution are numerically 

approximated.

In this paper, we combine marginal distributions for individual assets and 

copula distributions for dependence structure to form multivariate distribution 
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for market index portfolio returns. The marginal distributions are designed to 

represent the difference in tail thickness. The copula distributions are chosen 

to reflect asymmetric tail dependence. The aim of this paper is two folds. First, 

we use the generalized Pareto distribution and copula distribution to present 

the impact of asymmetric tail dependence and fat-tailed behavior on the risk 

measures. Second, we quantify economic gains from modeling asymmetric tail 

dependence of the market index returns. We evaluate the rate of return 

differentials between the optimal portfolios from the asymmetric Student t and 

asymmetric t distributions against the skewed t distribution.

The remainder of the paper proceeds as follows. Section 2 briefly describes 

the asymmetric Student t model introduced by Thiele (2020). Section 3 

presents our empirical results. Section 4 concludes the discussion.

Ⅱ. Modeling

We employ a conditional distribution with the asymmetric Student 

t-distributed residuals for the market index returns:

             μ ε ε  σ   ⋯ ,                    (1)   

                              ～ανν

where μ is the mean, σ is the time-varying standard deviation, and   is 

distributed to asymmetric Student t with shape parameters,    . The 

parametric model for the asymmetric Student t-distributed market index 

returns is:

                                μσανν    
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where 
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    


.

While the parameter   governs the skewness of the distribution, the 

parameters  and  represent the thickness of the left and right tail, 

respectively. Therefore, the function   separates out non-symmetry of the 

distribution into skewness and the difference in the tail-thickness on each 

side. The skewness parameter   of the asymmetric Student t distribution does 

not suffice in explaining the difference in the tail-thickness of the distribution, 

because it can be shown that the tails on each extreme still fade down at the 

same rate with ≠ . So, irrespective of the value of  , we can 

parameterize the different rates of decay in the left and right tails of the 

asymmetric Student t distribution using the parameters  and . Zhu and 

Galbraith (2010) show that ≠  can be derived from the symmetric Student 

t distribution, with   . 

Thiele (2020) applies the first-order dynamic conditional score procedure in 

order to accommodate a time-varying volatility on the asymmetric Student t 

distribution in equation (2). To that end, we characterize λ from the 
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transformation function, σ  expλ to insure non-negative time-varying 

standard deviation as the following dynamic equation:

                       λ  δ ϕλ    κ                                            (3)

                         
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where  ∂λ

∂ ln
 denotes the contribution of the time-varying volatility to 

the log-likelihood function, and   
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 is the inverse of the

information matrix to rescale the innovations.   and    can be expressed 

as follows:
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The equation (5) specifies how the squared deviations from the mean, 



   


 have an impact on the volatility. The structure of equation (5)  

shows that the thinner the tails of the distribution(  get bigger), the bigger 

the   in equation (5) and   in equation (4), respectively. So, when the tails of 

the distribution are very thin, the occurrence of the extreme value of   is very 
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rare and gets bigger weight in calculating the time-varying volatility in the 

next period. 

The volatility dynamics in equation (3) can accommodate leverage effects by 

adding the term,            in equation (7): 

   λ  δ ϕλ    κ    κ       ,              (7)

where   . So, when there is a negative return in period t-1 (i.e. 

    ), the time-varying volatility gets bigger in period t. Equations (1) - (7) 

completes the asymmetric Student t distribution dynamic conditional score 

model with leverage effect.

Ⅲ. Estimation

1. Data

The data for Korea (Korea Composite Stock Price Index, KOSPI), U.S. (S&P 500 

Index, S&P 500), Hong Kong (Hang Seng Index, HIS), UK (Financial Times Stock 

Exchange 100, FTSE 100), China (Shanghai Composite Index, SCI), and Japan 

(Nikkei 225, NK225) are collected. The daily stock market index return data 

consists of 2,998 observations and the data spans from January 4, 2007 to July 9, 

2021. According to Table 1, all indices’ returns are leptokurtic, and the five 

market indices except for the Hang Seng Index returns are negatively skewed.
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min 1st quantile median 3rd quantile max

KOSPI -11.64 -0.54 0.07 0.68 11.24

S&P 500 -13.47 -0.42 0.08 0.63 10.33

Hang Seng -14.70 -0.71 0.04 0.80 16.80

FTSE 100 -10.14 -0.56 0.03 0.63 10.46

Shanghai -12.83 -0.72 0.05 0.80 14.19

Nikkei 225 -12.92 -0.71 0.06 0.85 13.23

mean Standard dev. skewness kurtosis

KOSPI 0.03 1.39 -0.59 13.40

S&P 500 0.04 1.42 -0.75 16.20

Hang Seng 0.01 1.68 0.15 15.79

FTSE 100 0.00 1.32 -0.17 12.17

Shanghai 0.01 1.80 -0.47 9.48

Nikkei 225 0.02 1.67 -0.61 11.76

<Table 1> Descriptive Statistics

Note: The data for Korea (Korea Composite Stock Price Index, KOSPI), U.S. (S&P 500 Index, 
S&P 500), Hong Kong (Hang Seng Index, HSI), UK (Financial Times Stock Exchange 
100, FTSE 100), China (Shanghai Composite Index, SCI), and Japan (Nikkei 225, 
NK225) are used for the descriptive statistics. The daily stock market index data 
consists of 2,998 observations and the data spans from January 4, 2007 to July 9, 2021. 
According to Table 1, all indices’ returns are leptokurtic, and the five market indices 
except for the Hang Seng Index returns are negatively skewed.

The conjecture that negative shocks induce more volatility than positive shocks 

can be substantiated by the parameter estimates of the EGARCH model. From the 

EGARCH model of the form    
  



  

ϵ   ϵ  


  



  , where 

  logσ
, the leverage effect coefficient γ is estimated at -0.366 with the 

p-value of 0.000 for the KOSPI. For other indices, the leverage effect coefficient 

γ is estimated at -0.722 (p-value=0.000), -0.402 (0.000), -0.999 (0.000), -0.011 

(0.690), and -0.556 (0.000) for the S&P 500, Hang Seng Index, FTSE 100, 

Shanghai Composite Index, and the Nikkei 225, respectively. Except for the 

Shanghai Composite Index returns, the leverage effects are prevalent in the 

global stock market index returns.
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2. Tail Asymmetry

We report the parameter estimates of the four models, the asymmetric 

Student t dynamic conditional score, asymmetric t dynamic conditional score, 

skewed t dynamic conditional score, and t dynamic conditional score models 

with the leverage effect in Table 2. We use the maximum likelihood procedure 

and the Newton-Raphson algorithm for the numerical maximization of the 

Hessian matrix in computing the covariance matrix of the model parameters. 

The log-likelihood values (ln ) are reported in the last column, and the 

standard errors for the parameter estimates are in parentheses. Using t-statistics 

from the parameter estimates of κ and the standard errors in parentheses 

reported in Table 2, the null hypotheses of no leverage effect (  ) in the 

conditional volatility are rejected at a 1% level of significance for the 

asymmetric Student t, asymmetric t, skewed t, and the t distribution models 

except for the SCI. It is apparent that the conditional volatilities are highly 

persistent from the parameter estimate  in equation (3) for all six indices and 

the autocorrelation functions in Figure 1. Table 3 reports the Bayesian 

information criterion for the asymmetric Student t, asymmetric t, skewed t, and 

t models using the six indices. For the five market indices, the Bayesian 

information criteria are minimized when the asymmetric Student t distributions 

are used. The BIC for the Hang Seng Index is minimized with the skewed t 

distribution, however, the BICs are almost identical for the asymmetric Student t 

and the skewed t distributions. The parameter estimates of   from the 

asymmetric Student t model are reported in Table 2. The parameter estimates of 

  for the KOSPI and SCI are 0.5, and those for the S&P 500, HSI, FTSE 100, and 

the NK225 are close to 0.5. For all indices, removing skewness is evidenced 

from the statistically significant parameter estimates of   . 
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KOSPI δ ϕ κ α κ   μ lnL

Asymmetric 
Student t

-0.001
(0.001)

0.991
(0.003)

0.053
(0.006)

0.500
(0.013)

0.026
(0.004)

3.577
(0.431)

9.011
(1.279)

0.062
(0.032)

4,426

Asymmetric 
t

-0.002
(0.001)

0.988
(0.004)

0.057
(0.007)

-
0.027
(0.004)

3.612
(0.352)

8.896
(0.604)

0.053
(0.004)

4,426

Skewed t
-0.003
(0.001)

0.989
(0.004)

0.057
(0.007)

0.536
(0.011)

0.029
(0.005)

5.126
(0.498)

-
0.127
(0.027)

4,434

t
-0.004
(0.001)

0.990
(0.002)

0.052
(0.007)

-
0.035
(0.004)

12.751
(2.227)

-
-0.033
(0.010)

4,440

S&P 500 δ ϕ κ α κ   μ lnL

Asymmetric 
Student t

-0.009
(0.003)

0.971
(0.005)

0.085
(0.009)

0.515
(0.012)

0.075
(0.006)

3.541
(0.321)

9.501
(2.104)

0.108
(0.023)

4,125

Asymmetric 
t

-0.008
(0.003)

0.968
(0.004)

0.085
(0.009)

-
0.074
(0.006)

3.377
(0.279)

10.814
(0.848)

0.082
(0.013)

4,134

Skewed t
-0.011
(0.003)

0.973
(0.005)

0.085
(0.008)

0.541
(0.010)

0.076
(0.007)

4.782
(0.403)

-
0.145
(0.021)

4,112

t
-0.012
(0.003)

0.967
(0.005)

0.085
(0.008)

-
0.075
(0.007)

4.504
(0.357)

-
0.078
(0.013)

4,111

HSI δ ϕ κ α κ   μ lnL

Asymmetric 
Student t

0.001
(0.001)

0.986
(0.004)

0.051
(0.007)

0.515
(0.014)

0.025
(0.004)

5.033
(0.694)

6.618
(1.128)

0.084
(0.042)

5,114

Asymmetric 
t

0.001
(0.001)

0.985
(0.004)

0.051
(0.007

-
0.025
(0.004)

4.673
(0.545)

7.204
(0.418)

0.050
(0.021)

5,115

Skewed t
0.001
(0.001)

0.987
(0.004)

0.051
(0.007)

0.528
(0.011)

0.026
(0.005)

5.682
(0.587)

-
0.123
(0.036)

5,115

t
0.001
(0.001)

0.985
(0.004)

0.059
(0.007)

-
0.025
(0.005)

5.607
(0.571)

-
0.044
(0.021)

5,118

Judging from the parameter estimates of  and  , all market indices 

returns have thicker left tails and thinner right tails than the normal. From the 

estimation results, we can conclude that the asymmetric Student t distribution 

is capable of controlling for different thickness between the left and right tail. 

Since the skewed t and the t distributions are assumed to have the symmetric 

tails, on the other hand, those two models are mis-specified.

<Table 2> Model Estimation Results
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FTSE 100 δ ϕ κ α κ   μ lnL

Asymmetric 
Student t

-0.003
(0.002)

0.983
(0.004)

0.047
(0.007)

0.506
(0.014)

0.054
(0.005)

4.386
(0.522)

8.740
(1.893)

0.033
(0.032)

4,326

Asymmetric 
t

-0.003
(0.002)

0.982
(0.004)

0.047
(0.007)

-
0.054
(0.005)

4.271
(0.443)

9.084
(0.637)

0.025
(0.015)

4,327

Skewed t
-0.005
(0.001)

0.986
(0.004)

0.047
(0.007)

0.535
(0.010)

0.055
(0.005)

5.608
(0.548)

-
0.092
(0.026)

4,330

t
-0.005
(0.002)

0.981
(0.004)

0.046
(0.007)

-
0.054
(0.005)

5.503
(0.526)

-
0.020
(0.015)

4,336

NK225 δ ϕ κ α κ   μ lnL

Asymmetric 
Student t

0.005
(0.003)

0.962
(0.007)

0.076
(0.008)

0.512
(0.014)

0.052
(0.006)

4.895
(0.608)

8.830
(1.904)

0.085
(0.047)

5,165

Asymmetric 
t

0.005
(0.003)

0.962
(0.008)

0.075
(0.009)

-
0.051
(0.006)

4.666
(0.515)

9.726
(0.738)

0.055
(0.021)

5,165

Skewed t
0.003
(0.002)

0.964
(0.008)

0.077
(0.009)

0.530
(0.011) 

0.052
(0.006)

6.119
(0.655)

-
0.131
(0.037)

5,169

t
0.004
(0.002)

0.962
(0.008)

0.074
(0.009)

-
0.051
(0.006)

5.919
(0.608)

-
0.046
(0.021)

5,173

SCI δ ϕ κ α κ   μ lnL

Asymmetric 
Student t

0.001
(0.001)

0.999
(0.001)

0.049
(0.005)

0.500
(0.013)

0.002
(0.003)

3.441
(0.398)

4.617
(0.588)

0.040
(0.035)

5,291

Asymmetric 
t

0.001
(0.001)

0.999
(0.001)

0.049
(0.006)

-
0.003
(0.003)

3.447
(0.358)

4.617
(0.198)

0.039
(0.000)

5,291

Skewed t
0.001
(0.002)

0.999
(0.004)

0.049
(0.007)

0.512
(0.010)

0.002
(0.004)

3.929
(0.309)

-
0.068
(0.029)

5,293

t
0.001
(0.002)

0.999
(0.004)

0.049
(0.007)

-
0.002
(0.004)

3.906
(0.302)

-
0.040
(0.019)

5,294

Note: We report the parameter estimates of the four models with leverage effect and the 
log-likelihood values (ln) in the table. The standard errors are in parentheses. As 

reported in the sixth column, the null hypothesis of no leverage effect (  ) in the 
conditional volatility is rejected at a 1% level of significance for all models except for 
the SCI. To reflect the persistency and leverage effect of the conditional volatility, we 
estimate the asymmetric Student t, asymmetric t, skewed t, and the t distribution 

models. The parameter estimates of   for the KOSPI and SCI are 0.5, and those for 
the S&P 500, HSI, FTSE 100, and the NK225 are close to 0.5. For all indices, removing 
skewness is evidenced from the statistically significant parameter estimates of  . 
As the parameter estimates of   and   show, all market indices returns have thicker 

left tails and thinner right tails than the normal. The estimation results in the table 
show that the asymmetric Student t distribution is capable of controlling for different 
thickness between the left and right tail.
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KOSPI S&P HSI FTSE SCI NK225

Asymmetric Student t 8,916.3 8,286.6 10,293 8,716.6 10,647 10,396

Asymmetric t 8,907.4 8,278.1 10,287 8,709.0 10,639 10,388

Skewed t 8,924.3 8,306.9 10,286 8,716.1 10,642 10,395

t 9,247.2 8,961.5 10,571 9,024.2 10,931 -

<Figure 1> Autocorrelation Functions of Squared Index Returns
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Note: The squared returns for the six market indices exhibit significant autocorrelation. This 
indicates that the conditional volatilities are persistent. It is apparent that the 

conditional volatilities are highly persistent from the parameter estimate  for all six 
indices reported in Table 2 and the autocorrelation functions in the above figures.

<Table 3> Model Selection Criterion

Note: The table reports the Bayesian information criterion for the asymmetric Student t 
dynamic conditional score, asymmetric t, skewed t, and t models using the six market 
indices. The tail asymmetries of the data are best captured by the asymmetric t model 
except for the Hong Kong Hang Seng Index. For the five market indices, removing 

skewness is evidenced from the statistically significant parameter estimates of   .

Figure 2 shows qq-plots for the standardized residuals from the skewed t 

dynamic conditional score and asymmetric Student t dynamic conditional score 

models against a reference distribution with symmetric tails. Most of the qq-plots 

from the asymmetric Student t dynamic conditional score model do not deviate 

much from a reference distribution. However, the qq-plot from the asymmetric 

Student t dynamic conditional score model for the Shanghai Composite Index 

returns suggests that the tails of the asymmetric Student t dynamic conditional 

score model are still fatter than the tails of the symmetric-tailed distribution. 



Analysis on Asymmetric Tail Dependence of Portfolio Returns 95

<Figure 2> QQ Plots against Asymmetric Student t and Skewed t Reference Distributions

<KOSPI>                                  <S&P 500>

 <HIS>                                     <FTSE>

  <SCI>                                    <NK225>

Note: The figure shows qq-plots for the standardized residuals from the estimated skewed t 
dynamic conditional score and asymmetric Student t dynamic conditional score models 
against a reference distribution with symmetric tails. For each index, the upper panel shows 
the qq-plots of the standardized residuals from the estimated skewed t dynamic conditional 
score model and the lower panel graphs the qq-plots of the standardized residuals from the 
estimated asymmetric Student t model. The qq-plot from the asymmetric Student t dynamic 
conditional score model for the Shanghai Composite Index returns suggests that the tails of 
the asymmetric Student t dynamic conditional score model are still fatter than the tails of 
the symmetric-tailed distribution. For other indices, the qq-plots prove that the asymmetric 
Student t dynamic conditional score model estimation addresses the fat-tailed issues. 
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3. Risk Measures

In this section, we analyze the impact of tail shape on the risk measures. If 

the tails of the marginal distributions of the market index returns are thicker 

than normal, we would underestimate the risk measures by assuming that the 

marginal distributions are normally distributed. We use the generalized Pareto 

distribution, GPD henceforth, as the fully parametric model for the tails of the 

marginal distribution. 

Let … be independently identically distributed losses with an 

unknown CDF F. Then, the conditional probability of the excesses over a 

threshold  can be expressed as follows:

              Pr  ≤   
  

   

Embrechts et al. (1997) show that the generalized Pareto distribution is the close 

approximation to the above excess distribution with a positive function .

           









 

 
 



for ≠ 

 exp
  for   









,  β〉              

defined for  ≥  when  ≥  and  ≤  ≤  when   .

The most daunting task in the maximum likelihood estimation of the GPD 

model is to choose the optimal threshold value where the marginal 

distribution starts to fade out to the tail area. Goldie and Smith (1987) and Hall 

(1990), Danielsson and de Vries (1998), Danielsson et al. (2001) choose the 

optimal threshold value by using a subsample bootstrap procedure.

To show how tail thickness affects the risk measure estimation, however, the 

sample mean excess function plot due to McNeil and Saladin (1997), McNeil 
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Upper Tail Estimate with the Threshold at 0.9% (18.26% of observations)
Value Standard Error t-ratio

 0.196 0.049 4.02

 0.709 0.046 15.54

Lower Tail Estimate with the Threshold at –0.9% (16.76% of observations)
Value Standard Error t-ratio

 0.224 0.055 4.06

 0.854 0.060 14.23

and Frey (2000) and Zivot and Wang (2006) would be sufficient. The bias and 

the efficiency involved in the estimation of the GPD model are dependent on 

the number of observations pertained to the tail area and the center of the 

marginal distribution. There is no clear-cut solution to this problem.

We choose 0.9% and -0.9% as the upper tail and right tail area threshold 

values and estimate the GPD marginals based on the excesses over threshold 

values. For the KOSPI, we use 18.26% of the 2,995 observations with the 

threshold value of 0.9% to estimate the upper tail parameter estimates of the 

GPD model. Also, we use 16.76% of the observations with the threshold value 

of -0.9% to estimate the lower tail parameter estimates of the GPD model. The 

tail shape parameters on both sides with the KOSPI and S&P 500 are reported 

in Tables 4 and 5. For the other four indices, we do not report the estimation 

results to save space, however, the results are available upon request.

<Table 4> GPD Model Estimation with the KOSPI

Note: The GPD model estimation results are reported in the table. We choose 0.9% and 
-0.9% as the upper tail and right tail area threshold values and estimate the GPD 
marginals based on the excesses over threshold values. For the KOSPI, we use 18.26% 
of the 2,995 observations with the threshold value of 0.9% to estimate the upper tail 
parameter estimates of the GPD model. Also, we use 16.76% of the observations with 
the threshold value of -0.9% to estimate the lower tail parameter estimates of the GPD 
model. The tail shape parameters on both sides with the KOSPI are reported in the 
table. For the other four indices, we do not report the estimation results to save 
space, however, the results are available upon request.
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Upper Tail Estimate with the Threshold at 0.9% (17.23% of the data)
Value Standard Error t-ratio

 0.317 0.058  5.44

 0.636 0.046 13.94
Lower Tail Estimate with the Threshold at –0.9% (14.89% of the data)

Value Standard Error t-ratio

 0.182 0.054  3.38

 1.010 0.072 14.03

<Table 5> GPD Model Estimation with the S&P 500

Note: The GPD model estimation results are reported in the table. ut solution to this 
problem. We choose the same threshold values as the KOSPI. For the S&P 500, we use 
17.23% of the 2,995 observations to estimate the upper tail parameter estimates of 
the GPD model. Also, we use 14.89% of the observations to estimate the lower tail 
parameter estimates of the GPD model. The tail shape parameters on both sides with 
the S&P 500 are shown. For the other four indices, we do not report the estimation 
results to save space, however, the results are available from the author upon request.

From the statistically significant positive estimates of the tail shape 

parameter , we can determine that the left tails and right tails of the KOSPI 

and S&P 500 have fat-tailed distributions. The tail shape parameters  for the 

HSI are 0.16 (t-ratio 4.17) and 0.11 (17.51), for the FTSE 100 are 0.24 (4.44) 

and 0.13 (2.58), for the SCI are 0.06 (1.63) and 1.13 (18.90), and for the NK225 

are 0.09 (2.45) and 0.15 (3.55). Therefore, except for the upper tail of the SCI, 

we can conclude that the upper tails and lower tails of the six market indices 

returns have fat tails on both sides of the marginal distributions.

We consider fifteen pairs of one-period investment in two market indices. 

For each portfolio with expected return  and the joint distribution function 

, we define two risk measures  and   for a given level of loss:

                                   
                                       (8)

                              〉                                        (9)

We generate random simulations from the joint distribution function  and 

calculate numerical approximations to the  and  . The KOSPI daily 

returns are distributed to the GPD as shown in Table 4 and the S&P 500 daily 
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returns are distributed to the GPD in Table 5. We use the Clayton copula with

the correlation parameter  , θ  θ  θ   
 θ



, where     that 

reflects the asymmetric lower tail dependence parameter τ  
 θ



 and the 

upper tail dependence parameter τ  . We also use the Frank copula which

does not exhibit lower or upper tail dependence. The rationale behind the 

choice of the Clayton copula lies in the tail asymmetry, while the Frank copula 

and Gaussian copula (for the case of correlation coefficient < 1) do not exhibit 

lower or upper tail dependence. In spite of the dependence structure between 

the marginal distributions of copulas, the Gaussian copula is the most 

generally used copula. We analyze the impact of the dependence structures of 

copulas on the risk measures using the Clayton, Gaussian, and Frank copula.

According to Table 6, the portfolio that invests 50% of wealth in KOSPI and 

50% in S&P 500 could make -1.25% loss or more in one trading day with 5% 

probability. If that event occurs, then, the expected loss could be as low as 

-2.14%. When   , the  and   are calculated as -2.62% and -3.84%. 

To compare this result with symmetric tail dependence, we use the normal 

copula. For a given level of loss   , the  and   are calculated as 

-1.16% and -1.82%. That is, the portfolio that invests 50% of wealth in KOSPI 

and 50% in S&P 500 could make -1.16% loss or more in one trading day with 

5% probability. If the event occurs, then, the expected loss could be as low as 

-1.82%. When   , the  and   are calculated as -2.22% and -2.98%.

Table 6 also shows numerical approximation to the  and   when the 

portfolios are composed of a pair of market indices. For a given level of loss 

  , the  ranges from -1.25% to -1.44%, and the   ranges from –
2.54% to -2.91% when the Clayton copula is used to describe the dependence 

structure of the portfolio returns. The important fact that we can read off 

from the table is that the risk measures are underestimated when we assume 
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KOPSI and S&P 500
 

 95%  99%  95%  99%
Gaussian -1.16 -2.22 -1.82 -2.98

Frank -1.13 -2.02 -1.69 -2.65
Clayton -1.25 -2.62 -2.14 -3.84

KOSPI and HSI
 

 95%  99%  95%  99%
Gaussian -1.32 -2.38 -2.01 -3.19

Frank -1.13 -2.02 -1.69 -2.65
Clayton -1.42 -2.84 -2.34 -4.05

KOSPI and SCI
 

 95%  99%  95%  99%
Gaussian -1.36 -2.48 -2.07 -3.33

Frank -1.31 -2.28 -1.93 -3.00
Clayton -1.44 -2.91 -2.42 -4.30

KOSPI and NK225
 

 95%  99%  95%  99%
Gaussian -1.33 -2.37 -2.00 -3.17

Frank -1.30 -2.22 -1.89 -2.88
Clayton -1.43 -2.82 -2.36 -4.13

KOSPI and FTSE 100
 

 95%  99%  95%  99%
Gaussian -1.21 -2.20 -1.83 -2.92

Frank -1.17 -2.01 -1.70 -2.60
Clayton -1.27 -2.54 -2.10 -3.65

that the dependence structures of the portfolios are characterized by the 

Frank copula. The Frank copula assumes no lower or upper tail dependence. 

The Gaussian copula also tends to underestimate the risk measures compared 

to the Clayton copula. It should be noted from this simulation that modeling 

the dependence structures of the multivariate portfolio returns is important in 

evaluating and managing risk.

<Table 6>   and   by Simulation with the GPD Margins and the 

Parametric Copulas

Note: We use the Clayton copula and the Frank copula along with the GPD estimation results 
in Tables 4 and 5 to approximate the VaR and ES. The risk measures with the 
Gaussian, Frank, and the Clayton copula are reported in each panel. The risk 
measures are underestimated when we assume that the dependence structures of the 
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portfolios are characterized by the Gaussian copula or the Frank copula. The Frank 
copula assumes no lower or upper tail dependence. The Gaussian copula also tends to 
underestimate the risk measures compared to the Clayton copula. Each panel presents 
the simulation results from the portfolio which consists of a pair of market index, that 
is, KOSPI and S&P 500, KOSPI and HIS, KOSPI and FTSE 100, KOSPI and SCI, and 
KOSPI and NK225, respectively. For the rest of the ten pairs of portfolios, we do not 
present the results to save space.

4. Portfolio Performance Evaluation

The aim in this section is to measure the rate of return differentials that 

investors can increase by taking the alternative optimal portfolio choice that 

takes asymmetries and/or skewness of the distribution into account. That is, 

we quantify the difference in the rate of returns from characterizing the 

asymmetric tail dependence of the bivariate market index portfolio returns. 

To the best of our knowledge, Thiele (2020) suggests evaluating the rate of 

return gains from selecting a portfolio that takes asymmetric tail dependence 

into account for the first time. Following Thiele’s procedure, we generate the 

realized returns of the optimal portfolios from the asymmetric tail dependence 

models and the skewed t models and calculate the rate of return differentials 

between the two models. The estimation window consists of 1,000 trading days 

and moves forward by five days in each step of the procedure. We repeat the 

simulations 100,000 times. The investor can choose the optimal portfolios that 

maximize the expected utility. The optimal portfolios are chosen from the 

four combinations of strategies. That is, the marginal distributions for 

individual index returns are assumed to be distributed to the asymmetric 

Student t and the asymmetric t. The dependence structures of the portfolios 

are selected from the Frank copula and the Clayton copula. The rate of return 

differentials are calculated against the skewed t. 

The positive rate of return differentials reported in Tables from 7 to 10 

mean that the returns of the optimal portfolios of the asymmetric Student t 
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marginals or the asymmetric t marginals coupled with the Frank copula or the 

Clayton copula are higher than the returns of the optimal portfolios of the 

skewed t marginals combined with the Frank copula or the Clayton copula. 

The statistics in boldface are statistically significant at a 10% significance level. 

According to Tables from 7 to 10, the returns of the optimal portfolios from 

the asymmetric Student t or the asymmetric t marginals are higher than the 

returns of the optimal portfolios from the skewed t marginals in most cases 

irrespective of the copula distribution. In twelve cases out of fifteen from 

Table 7, for example, the rate of return differentials are positive. However, the 

positive rate of return differentials are statistically significant only in two cases 

with boldface numbers. On the other hand, the positive rate of return 

differentials reported in Table 8 mean that the returns of the optimal 

portfolios of the asymmetric t marginals and the Frank copula are higher than 

the returns of the optimal portfolios of the skewed t marginals and the Frank 

copula. The statistics in boldface are statistically significant at a 10% 

significance level. In twelve cases, the rate of return differentials are positive. 

In seven cases with boldface numbers, the positive rate of return differentials 

are statistically significant. From Table 10, we find four cases of negative rate 

differentials. The negative rate differentials in Table 10 show that the returns 

of the optimal portfolios from the asymmetric t marginals and the Clayton 

copula are lower than the returns of the optimal portfolios from the skewed t 

marginals and the Clayton copula. However, the negative rate differentials are 

insignificant. For the rest eleven cases, the returns of the optimal portfolios 

from the asymmetric t marginals and the Clayton copula are higher than the 

returns of the optimal portfolios from the skewed t marginals and the Clayton 

copula. Furthermore, five out of eleven cases, the rate of return differentials 

are significantly positive. From the empirical results reported in Tables 7-10, 



Analysis on Asymmetric Tail Dependence of Portfolio Returns 103

S&P 500 HSI FTSE 100 SCI NK225

KOSPI
3.42
(0.03)

-2.22
(0.86)

1.57
(0.23)

0.36
(0.44)

1.97
(0.20)

S&P 500 -
0.27
(0.44)

1.67
(0.19)

3.42
(0.06)

2.06
(0.13)

HSI - -
1.13
(0.17)

1.78
(0.19)

-0.02
(0.51)

FTSE 100 - - -
2.84
(0.13)

-0.95
(0.73)

SCI - - - -
1.34
(0.29)

we can conclude that characterizing the asymmetric dependence in the 

process of modeling the marginal distributions and the copula functions seems 

to have a positive impact on the performance of the optimal portfolio. The 

positive impacts on the performance of the optimal portfolios are conspicuous 

when we employ the asymmetric t in characterizing tail asymmetry. This 

finding is in line with the model selection results in Table 3. We find that the 

asymmetric t dynamic conditional score model best fits the KOSPI, S&P 500, 

FTSE 100, SCI, and the NK225 based on the BIC. A word of caution is in order 

with respect to the empirical results reported in Tables from 7 to 10. There are 

not many instances that the returns of the optimal portfolios of the 

asymmetric Student t marginals or the asymmetric t marginals are lower than 

the returns of the optimal portfolios of the skewed t marginals. However, the 

positive rate differentials are statistically significant only in seven and four 

cases in Tables 8 and 10, respectively.

<Table 7> Asymmetric Student t vs. Skewed t with Frank Copula

Note: We generate the realized returns of the optimal portfolios from the asymmetric 
Student t distribution and the skewed t distribution and calculate the rate of return 
differentials between the two models. The dependence structures of the portfolios are 
selected from the Frank copula and the Clayton copula. The estimation window 
consists of 1,000 trading days and moves forward by five days in each step of the 
procedure. We repeat the simulations 100,000 times. The positive rate of return 
differential reported in the table means that the returns of the optimal portfolios of 
the asymmetric Student t marginals and the Frank copula are higher than the returns 
of the optimal portfolios of the skewed t marginals and the Frank copula. The 
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S&P 500 HSI FTSE 100 SCI NK225

KOSPI
6.97
(0.00)

-2.24
(0.85)

4.58
(0.02)

2.22
(0.18)

1.81
(0.28)

S&P 500 -
1.07
(0.24)

2.64
(0.04)

6.55
(0.01)

2.59
(0.07)

HSI - -
1.31
(0.22)

3.35
(0.12)

-0.54
(0.59)

FTSE 100 - - -
5.97

-
-0.52
(0.60)

SCI - - - -
4.43
(0.06)

S&P 500 HSI FTSE 100 SCI NK225

KOSPI
2.59
(0.05)

-1.64
(0.91)

0.62
(0.36)

-0.25
(0.56)

0.43
(0.38)

S&P 500 -
-0.17
(0.55)

0.09
(0.47)

3.49
(0.04)

1.29
(0.14)

HSI - -
0.58
(0.25)

0.57
(0.35)

-0.97
(0.80)

FTSE 100 - - -
0.28
(0.46)

-1.29
(0.83)

SCI - - - -
0.05
(0.50)

statistics in boldface are statistically significant at a 10% significance level. In twelve 
cases, the rate of return differentials are positive, however, only two cases with 
boldface numbers, the positive rate of return differentials are statistically significant.

<Table 8> Asymmetric t vs. Skewed t with Frank Copula

Note: The positive rate of return differentials reported in the table mean that the returns of 
the optimal portfolios of the asymmetric t marginals and the Frank copula are higher 
than the returns of the optimal portfolios of the skewed t marginals and the Frank 
copula. The statistics in boldface are statistically significant at a 10% significance 
level. In twelve cases, the rate of return differentials are positive. In seven cases with 
boldface numbers, the positive rate of return differentials are statistically significant.

<Table 9> Asymmetric Student t vs. Skewed t with Clayton Copula

Note: The positive rate of return differentials reported in the table mean that the returns of 
the optimal portfolios of the asymmetric Student t marginals and the Clayton copula 
are higher than the returns of the optimal portfolios of the skewed t marginals and the 
Clayton copula. The statistics in boldface are statistically significant at a 10% 
significance level. In ten cases, the rate of return differentials are positive. Only in two 
cases with boldface numbers, however, the positive rate of return differentials are 
statistically significant.
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S&P 500 HSI FTSE 100 SCI NK225

KOSPI
5.91
(0.00)

-1.63
(0.88)

3.05
(0.05)

1.78
(0.19)

-0.07
(0.50)

S&P 500 -
0.55
(0.33)

0.31
(0.40)

7.01
(0.00)

1.24
(0.22)

HSI - -
0.55
(0.33)

1.84
(0.18)

-1.66
(0.82)

FTSE 100 - - -
3.46
(0.17)

-0.75
(0.65)

SCI - - - -
3.10
(0.09)

<Table 10> Asymmetric t vs. Skewed t with Clayton Copula

Note: The positive rate of return differentials reported in the table mean that the returns of 
the optimal portfolios of the asymmetric t marginals and the Clayton copula are 
higher than the returns of the optimal portfolios of the skewed t marginals and the 
Clayton copula. The statistics in boldface are statistically significant at a 10% 
significance level. In eleven cases, the rate of return differentials are positive. In four 
cases with boldface numbers, the positive rate of return differentials are statistically 
significant.

Ⅳ. Concluding Remarks

In this paper, we use the generalized Pareto distribution and the copula 

distributions to analyze the impact of asymmetric tail dependence and 

fat-tailed behavior on the risk measures. We also quantify the difference in 

the rate of returns between the optimal portfolios generated by the 

asymmetric Student t distribution and the asymmetric t distribution against the 

skewed t distribution. The Clayton copula and the Frank copula which exhibit 

only lower tail dependence and no tail dependence respectively are employed. 

We consider fifteen pairs of one-period investment in two market indices. 

We generate random simulations from the joint distribution function and 

calculate numerical approximations to the  and  . Simulation results 

show that the risk measures with symmetric tail dependence underestimate 

those with asymmetric tail dependence. For the KOSPI returns at a given level 
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of loss   , the  and   with symmetric tail dependence 

underestimate risk by 7.2% and 15.0%, respectively.

We also quantify the rate of return differentials that investors can get by 

taking the asymmetries and/or skewness into account in portfolio selection. 

We generate realized returns of the optimal portfolios and calculate the 

difference in the rate of returns of the competing portfolios. The optimal 

portfolios are chosen under the assumption that marginal distributions for 

individual index returns are assumed to be distributed to the asymmetric 

Student t and asymmetric t. The dependence structures of the portfolios are 

selected from the Frank copula and the Clayton copula. The rate of return 

differentials are calculated against the optimal portfolio based on the skewed t 

marginal distribution. The returns of the optimal portfolios from the 

asymmetric Student t marginals (twelve cases in Table 8) or the asymmetric t 

marginals (eleven cases in Table 10) are higher than the returns of the optimal 

portfolios from the skewed t marginals irrespective of the copula distribution. 

There are not many instances (less than five cases at the maximum in each 

Table) that the returns of the optimal portfolios of the asymmetric Student t 

marginals or the asymmetric t marginals are lower than the returns of the 

optimal portfolios of the skewed t marginals. However, the positive rate of 

return differentials are statistically significant only in seven and four cases in 

Tables 8 and 10, respectively. It can be important to include the asymmetric 

tail dependence in the process of characterizing the marginal distributions of 

asset returns to improve the performance of the optimal portfolio, however, a 

caution needs to be exercised due to statistical significance.
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요 약

본 연구는 다음과 같은 두 가지 실증분석 결과를 도출하고 있다. 첫째, 일반화 파레토분

포와 코퓰라함수를 이용하여 꼬리분포의 비대칭성이 포트폴리오의 위험척도에 미치는 영

향을 추정하였다. 시뮬레이션 결과는 대칭적 꼬리분포를 이용하는 위험척도가 실제 위험

척도를 과소평가하는 것으로 나타났다. 둘째, 꼬리분포의 비대칭성을 반영한 최적포트폴

리오가 꼬리분포의 대칭성을 가정한 최적포트폴리오에 비해 수익률 면에서 우월한 정도를 

측정하였다. 실증분석 결과는 포트폴리오의 한계분포와 포트폴리오 구성자산 간 의존성분

포를 모형화 함에 있어 꼬리분포의 비대칭성 정보를 포함할 경우 최적포트폴리오의 기대

수익률이 상승하는 것으로 나타났다. 꼬리분포의 비대칭성을 모형화하는 것이 최적포트폴

리오에 미치는 영향은 수익률 우월성 추정치의 통계적 유의성으로 인해 해석에 유의해야 

할 것으로 보인다.

국문색인어: 비대칭꼬리분포, 왜도, 일반화 파레토분포, 기대손실


