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The Performance Evaluation on the General
Procedure for Forecasting Mortality*
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This study investigates the forecasting ability of the general procedure(GP) using
mortality data for South Korean males during 1983—2010. The GP was recently
infroduced to construct a stochastic mortality model by including every significant
demographic feature in historical mortality data. We assess the GP via a
comparison with seven existing stochastic mortality models, testing in—sample fit
and out—of—sample prediction for three age groups: 1-79, 11—79, and 60-79.
The results suggest that the GP consistently outperforms other models with regard
to the Bayesian Information Criterion(BIC) and Mean Absolute Percentage Error
(MAPE). This shows that the GP extracts optimal risk factors for the projections of
age—specific mortality rates from mortality data. Furthermore, we examine predicted
levels of uncertainty in forecasts at different ages and show how the risk can be
hedged using g—forwards. This information is useful for pension providers or
insurers to hedge future unexpected liabilities.
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I. Introduction

Human mortality decreased significantly in the 20th century(Preston, 1993; Smith,
1993). During the first part of the 20th century, the decline in mortality primarily
resulted from the reduction of infectious diseases for younger groups, and during the
last decades of the 20th century, the decline resulted from the reduction in deaths
owing to chronic diseases mainly for older age groups(Antolin, 2007). This increase in
longevity of human life is a blessing, but creates systemic risk in pension systems and
public retirement systems.

Population forecasts using static life tables would overestimate death rate because
they do not consider the evolution of mortality over time. An alternative solution is to
use a stochastic mortality model, Lee and Carter(1992) first proposed a stochastic
mortality model for forecasting mortality in the US, which is currently being considered
as the benchmark model. Subsequently, various models have been proposed to
contain more detailed demographic features such as cohort effects and age-dependent
differentials(Lee and Miller, 2001; Booth et al., 2002; Brouhns et al., 2002; Girosi and
King, 2005; Renshaw, 2006; Cairns et al,, 2006a; Currie, 2006; Hari et al., 2008;
Tulijapurkar, 2008; Plat, 2009; O'Hare, 2012).

In spite of such developments, it is ambiguous whether these models have enough
flexibility to represent age-specific differentials in mortality data. Moreover, the models
suffer from the limitation of universal applicability, because they were designed based
on the observation of mortality data for a few developed countries, especially the UK,

These problems can be overcome by using the “General Procedure”(GP) developed
by Hunt and Blake(2014). The GP provides an effective method of capturing all major
age-dependent demographic features from mortality data and of incorporating them
into a stochastic mortality model using non-parametric period and parametric age

functions. Since age/period functions are independent of each other, we are able to
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establish the age-specific mortality structure of the population under consideration and
a distinctive demographic pattern by comparing estimated age/period functions across
nations, We call the stochastic mortality model built by the GP as the GP model.

The GP model was originally constructed using mortality data from the UK and was
found to fit well in-sample on the basis of the Bayesian Information Criterion(BIC),
However, this does not necessary imply that the model is informative regarding
out-of-sample predictive contents., The GP model could be useful to forecast future
mortality rates, since it considers all risk factors for projections by obtaining the period
functions corresponding to age functions. In this study we investigate the accuracy of
projected mortality rates by the GP model. We evaluate the forecasting ability by
comparing out-of-sample forecasting performances of the GP model with those of the
seven popular models shown in Table 2. To obtain robustness of the out-of-sample
test, we also examine the impact of parameter uncertainty using the residual
bootstrapped technique(Koissi et al., 2006). This serves as a test for demonstrating
computational stability of the GP model, We also present fan charts of the forecasts
produced by the GP and two other models to show the impact of diverse risk sources
on mortality rate forecasts. This information is valuable for pension providers and
insurers to hedge unexpected liabilities.

The remainder of the paper is organized as follows. Section 2 presents a stochastic
mortality model produced by the GP and assesses its goodness-of-fit. Section 3 builds
a time-series forecasting model for the time-varying indexes of the GP model. Section
4 shows the in-sample fit and the out-of-sample forecasting accuracy of the GP model,
along with a comparative analysis of the performance of the GP model with those of
the other models. Section 5 examines the hedge effectiveness of g-forwards using
sample paths generated by the GP model, Finally, Section 6 summarizes and concludes

the study.
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II. Constructing Stochastic Mortality Model using
the General Procedure

1. Definition of Mortality and Data Source

To build stochastic mortality models, we use the crude(i.e., unsmoothed) death

rate m, , for age z in calendar year ¢:

_ Number of deaths during calendar year t aged x last birthday
Average population during calendar year t aged x last birthday ’

m:l:,t

2.1
where calendar year t is defined as running from ¢ to ¢+ 1; and the average
population is approximated by the estimate of the population aged z last birthday in
the middle of the calendar year, The one-year mortality rate g, , is given by

¢y =1—exp[—m,,], (2.2)
which is the probability that an individual aged exactly x at exact time ¢ will die
between ¢ and t+ 1. We use the South Korean male mortality data during 1983~2010

for the age range 1~79V,

2. The GP Model

We construct a stochastic mortality model using the GP, For brevity, we restrict the
discussion to points necessary for evaluating its predictive performance, Hunt and
Blake(2014) provide more detailed information on the GP, such as the identifiability
constraints and the algorithms for estimating parameters,

STAGE 0. The first step is to fit the mortality data to the model,

1) The data is obtained from Statistics Korea(KOSTAT). Available at www. kostat.go.kr.
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In(m,..) = a,, 2.3)
where a, is a nonparametric age function to be estimated, which reflects the average
age-specific pattern of mortality across the full age range. To estimate the parameter
a, and the parameters in the following stages, we use Brouhns’ methodology by
maximizing the log-likelihood of a Poisson distribution(Brouhns et al., 2002), Figure 1
displays the estimation results, showing the age pattern of mortality in childhood,

young adulthood(the accident hump), and senescence,

(Figure 1) Estimated values of a, for Stage O
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STAGE 1. For improving flexibility of the model (2.3), the next stage is to add a

nonparametric age/period term b;l)kffl) to it:

In (mm,t)zar—kbg)kgl), 2.4)

where the nonparametric age function b.(l.l) and the nonparametric period function kil)

describe the age effect and the period effect, respectively. The two grey lines shown in

the left and right panels of Figure 2 represent the fitted values of bil) and kil),

respectively, To improve the parsimony of the model (2.4), we need to design a

parametric age function f ) (z) reflecting the significant demographic feature of bg;l),
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We select a constant function(f W (z)oc 1) describing a general level of mortality for

all ages. Substituting b;l) with f (1) (), the updated model is expressed as

In(m,,)=a, + £ (2)kW, (2.5)
The two black lines shown in the left and right panels of Figure 2 represent the

fitted values of f ) (x) and kgl), respectively, This substitution provides a trade-off

between the fit quality and the parsimony of the model.

{Figure 2) Age functions(left—hand panel) and
period functions(right—hand panel) for Stage 1
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STAGE 2. Similarly, adding a nonparametric age/period biz) k:g?) function to the

model (2.5), we arrive at

In(m,,)=a, + s (x)kgl) + bff)kiz). (2.0)
The two grey lines shown in the left and right panels of Figure 3 represent the fitted
values of b:(,;Q) and k?), respectively, We use a straight line to capture the dominant

(2)

T

trend of b,”’. Substituting b;(f) with f (2) (x)(cc ), we arrive at

In (mj,;,t) =a, —|—f(1) (:c)k:il) —|—f(2) (:c)k‘?). 2.7)
The two black lines shown in Figure 3 represent the fitted values of f (2) (x) on the

left-hand panel and k?) on the right one.
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STAGES 36, We repeat the procedure until the functions f B (), -, f ©) () are

obtained, Then, we arrive at

(Figure 3) Age functions(left—hand panel) and
period functions(right—hand panel) for Stage 2
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; (i) (4)
In(m, ) =a,+ Y, " (x)k". (2.8)

i=1
Table 1 shows the implemented six parametric functional forms and their demographic
implications: the average level of mortality(i = 1); the increase in the general level of
mortality with aging(i = 2); mortality differentials related to young adult mortality
(i = 3); childhood mortality(i = 4); postponement of old age mortality(i = 5); and an

accident hump(i = 6),

{Figure 4y Nonparametric age(left—hand panel)
and period(right—hand panel) functions for Stage 7
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STAGE 7. Figure 4 shows the fitted values of bf) (left) and k‘i” (right) obtained by
adding the additional age/period term bg)ki?) to the model (2.8). We do not observe
any significant demographic features in the age function, such as distinct features
superimposed on a specific age range or trends across the entire age range. Thus, we

do not consider hidden parametric age functions,

STAGE 8. The final stage is to add the cohort term , _ , to estimate lifelong effects

specified by different generations, Then, we arrive at the final model:

6
n(m, ) =a,+ 3£ @k’ +7_.. 2.9)
i=1

where y =t — x (i.e., the year of birth), Figure 5 shows the estimation results obtained
using the model: the left-hand panel shows parametric age functions, f @ (z), and the
right-hand panel the mortality indexes, kzﬁi), scaled by deducting their means and
dividing by their standard deviations for convenience sake. The period functions, k’gi),

represent the time-trending behavior of the corresponding age functions f @ (x). The

fitted cohort effects are shown as dots in Figure 7.

{Figure 5) (Color online) Parametric age functions(left—hand panel) and period
functions(right—hand panel) scaled by deducting their means and dividing by
their standard deviations
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(Table 1) Parametric age function and demographic significance

Term _ . Free Demographic
) Description D (2)oc =mograp
(4) parameters significance
General level of
1 Constant 1 None .
mortality
2 Linear r—x None Gompertz slope
~\2
- N Y dult
3 Normal exp(—w) z,0 oung % !
o mortality
4 Put option (x,—2)" x, Childhood mortality
R -« ~ Postponement of
Rayleigh — —*(z—2z)?
> ayiels (e —z)exp(=p*(z—2)°) P old age mortality
1 (In(z) —2)2 « Peak of accident
6 Log-normal —exp(——5——) z,0
T o hump
(Table 2) Specifications of the seven stochastic mortality models
Model Formula

M1 Lee and Carter(1992)
logm,,=a,+ by)kgl)

M2 Renshaw(20006)
IOg Tn‘;l,z,f, = Q, + b(lnkil) + b.’(l.'Z),Yt*.’l.'

M3 Currie(2006)
logm,, =a, +n;1k7£1) +n, by,

M5 Cairns et al.(2006a)

q'L‘., -
log(il_'f )Zkﬁ”-ﬂ-ki”(m—m)
qnxt
M6 Cairns et al.(2009)
q'L‘., -
log( 1_"f ):k'in-i-ki?)(:c—w)-l-%,x
qnxt
M7 Cairns et al, (2009)
QT - R - -~
log( 1_(; ):k'in+k£2)(:y—w)+k§5)((:c—x)2—(ri,)+7t,m
.t
M8 Cairns et al, (2009)
qy —
log(—l_(; ):kzil)-ﬂ-ki?)(:n—w)+7t,‘,,,,(wc—w)
x,t

Note:  is the mean age over the range of ages being used in the analysis. n, is the number of ages
covered in the sample age range. c;f. is the mean value of (z— )2, z, is a constant parameter to
be estimated. M4 is not included in our analysis, It is the P-splines model developed in
Currie(2000).
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(Table 3) BIC measures for GP, M1—M3 and M5—-M8 models using
mortality data for South Korean males aged 1-79

Model Log—likelihood BIC
General Procedure -10,895.49 -12,241.69
M1 -17,138.76 -17,855.35
M2 -11,691.97 -13,121.29
M3 -15,478.96 -16,295.71
M5 -115,383.90 -115,599.60
M6 -56,615.52 -57,235.79
M7 -45 644,04 -46,368.33
M8 -33,587.82 -32,959.84

3. Assessing Model Fit

In order to assess the goodness-of-fit of the GP model and the other seven models

listed in Table 2, we use the BIC measure:
BIC= L(3)~ 3 KIn(P), (2.10)

where L() is the log-likelihood of the estimated parameter ¢; P is the number of
observations; and A is the number of parameters being estimated, It provides a
trade-off between the fit quality and parsimony of the model. The best estimate is
chosen based on the highest value of BIC measure, Table 3 shows the BIC scores for
the eight models estimated using mortality data for South Korean males aged 1~79
during 1983~2010. The GP model has the highest value of BIC( -12,241.69), making it
the best-fit model, We also observe that the models, M5~M8, do not deliver significant

performance results, This is because they were solely designed for higher age groups.
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III. Modeling Time-varying Indexes

To examine the future distribution of mortality rates, we build time series models for
the stochastic variables(i.e., the mortality indexes and cohort effects) of the eight

models,

1. Modeling GP Mortality Indexes

Chan et al, (2014) suggest a general class of vector autoregressive integrated moving
average(VARIMA) model for multiple mortality indexes, However, when we applied
the VARIMA model to the GP indexes, the first and second best-fit models do not pass
diagnostic tests, Thus, the GP mortality indexes, kzi"’), are modeled using a multivariate
random walk with drift(RWD) commonly used to build time-series models for mortality
indexes(for example, a univariate RWD model in Lee and Carter(1992) and a
multivariate RWD model in Cairns et al, (2006a, 2011)).

The multivariate RWD process for the mortality indexes k, = (k‘gl),---, kis))T is

defined as follows:

kiy,=k,+p+CZ, (3.1)
where € R® is a constant 6 X 1 vector; C'is a constant 6 6 upper triangular
matrix; and Z, is a six-dimensional standard normal random variable. Vector p
represents the drift and matrix C' the volatility of the risk factors, satistying
Var(A kt) = CCT, The volatility matrix C'is uniquely determined from Var(A kt)

based on the Cholesky-decomposition. The estimation results are

p= (—3.413,0.155,0.035, — 0.524, — 0.040, 0.025) " (3.2)

and
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712 —4.84 —587 —1.17 0.29 —0.12
—4.84 5.07 4.48 1.54 —0.35 —0.05
—5.87 448 8.95 0.27 —0.31 0.02 (3.3)
—1.17 154 0.27 148 —0.18 —0.03 5.5
029 —035 —-0.31 —0.18 0.11 0.02
—0.12 —0.05 0.02 —0.03 0.02 0.07

Var(VkAt) = aUAT:

Figure 6 displays the fan charts for the GP mortality indexes obtained by simulating
1,000 paths. The dashed lines indicate 95% confidence intervals. The projections show
diverse patterns of trend and level of uncertainty, which reflects own intrinsic features

of specific age groups for mortality rate projections.

2. Modeling Cohort Effects

We assume that cohort effects, ~, are independent of k:ii), For the time horizon

of 1983~2010, the year of birth, t—x, is given from 1904 to 2009, and the cohort
effects with fewer than 5 observations are excluded from the fitting procedure. Since
an RWD model is unlikely to be appropriate for modeling cohort effects(Cairns et al.,
2011), we use a more general autoregressive integrated moving average(ARIMA)
process, The ARIMA(p,d,q) models with d=10,1,2 and p, ¢=0,1,2,3,4,5 are
considered as candidates, Of these models, the best model is ARIMA(2,0,2) based on
the BIC,

Figure 7 shows the fan chart for cohort effects obtained by simulating 1,000 paths.
We observe a strong discontinuity between 1945 and 1946 relating to the end of the

Second World War, A similar result is also observed in the cohort effects estimated by

the GP model for the UK mortality data(Hunt and Blake 2014),
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(Figure 6) Mortality index fan charts, kgi). The dots display the estimates of the
mortality indexes fitted to the historical data.
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(Figure 7) Cohort effect fan charts =y,_,. The dots display the estimates of the
cohort effects fitted to the historical data.
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IV. Evaluating Predictive Accuracy

In this section, we examine the accuracy of projected mortality rates for the eight
models, To establish the robustness of our results, we perform out-of-sample
forecasting experiments for three different age groups: 11~79(younger and older age

ranges), 1~79(full age range), and 60~79 years(older age range).

1. Mortality Projections for Age Range 11—79

We fit the models to mortality data over the age range 1~79 and over four different
historical “look-back” windows: (1) 1983~2000; (2) 1983~2001; (3) 1983~2002; and (4)
1983~2003.

We first evaluate the fitting performances in terms of the BIC. As shown in Table 4,

the best-fit model is the GP model with the highest BIC measure(marked with the
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symbol *) for all look-back windows, The second-best model(marked with the symbol
) is M3 for the look-back window 2001~2010 and M2 for the other look-back
windows,

Next, we evaluate the forecasting performances over the four different
“look-forward” windows: (1) 2001~2010; (2) 2002~2010; (3) 2003~2010; and (4)
2004~2010. Mortality indexes over the windows are generated by using the
multivariate(or univariate) RWD model fitted to the corresponding look-back
windows. The models are quantitatively assessed based on the accuracy of projections
using the mean absolute percentage error(MAPE) between ¢, , , the mean forecasts of

q...,and g, , , historical data:

qx,t z]a:,t

_Jat] 4.1)
qx,t

ware= 5 %)

t=ty @
where ¢, is the first year of the look-forward horizons and N is the number of
observations, The MAPE measure is computed only for the age range 11~79 for the
convenience of not extrapolating the cohort effects «, .. That is, the cohort effects for
computing future mortality rates are obtained from the estimations over the look-back
windows, As shown in Table 4, the GP model is the best-fit model with the smallest
MAPE measures for all look-forward windows, and the second-best model is M1,
Further, we examine the effect of parameter uncertainty using the residual bootstrap
methodology proposed by Koissi et al,(2006). Figure 8 displays the mortality index
k’il) for 500 bootstrap residual matrices over a look-back window of 1983~2000. We

observe that the underlying pattern of kil) (and also the other indexes, not shown
here) remain unchanged, which reflects the computational stability of the GP model,
The MAPE value calculated over the period 2001~2010 is 9.31%, which is close to the
value of 9.07% in the absence of parameter uncertainty. This (roughly) reflects that
parameter uncertainty has little impact on ranking the forecasting performance of

mortality models on the basis of MAPE,
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These results show that the GP model delivers the best performance in terms of
both in-sample and out-of-sample fit, regardless of the sample types. The second
model, M2 or M3 in terms of BIC and M1 in terms of MAPE, is highly dependent on the
sample types. We also observe that the model M5 does not deliver significance

performance results, since it was designed for higher groups only.

(Figure 8) (Color online) Mortality index k,ﬁl), 500 bootstraps
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2. Mortality Projections for Age Range 1-79

To simulate mortality rates for the age range 1~79, we need to specify stochastic
processes for modeling cohort effects, For the models with the cohort term v, ., M2,
M3, M6, M7, and M8, we consider ARIMA(p,d,q) models with d=0,1,2 and
p,q=0,1,2,3,4,5 as candidates and pick the best-fit model among them using the
BIC measure. The period 1983~2000 is used as the historical look-back window for
examining ten-year forecasts, As shown in Table 5, the best predictor is the GP model

with the smallest MAPE measure of 8,24%, and the second-best model is M3 with 11,12%,
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3. Mortality Projections for Age Range 60-79

For the age range 60~79, the models M1~M3 and M5~M8 are fitted into the mortality
data for a back-ward window of 1983~2000, and time-series models are also
constructed, However, the GP model is fitted to the age range 1~79, because the
model already has the age functions characterizing age-specific demographic features
over the range, Among the parametric age functions, only the three functions, f (1),
f (2), and f ®) effectively contribute to the projections. The others have little effect on
the projections, since their values are near zero in the range as shown in the left panel
of Figure 5. This might be a penalty to the GP model owing to some poor-fit arising
from the difference between the fitting age range and the evaluating one.

The MAPE measures are computed over a forward window of 2001~2010. As shown
in Table 6, the GP model is the best predictor with the smallest MAPE measure of

2.82%, and the second-best model is M3,

V. Applications to Mortality/Longevity-linked Derivatives

1. Comparison of Mortality Fan Charts

For the LC(M1), CBD(M5), and GP models, we look at the volatility of projections of
mortality rates at younger and older ages. The top panel of Figure 9 shows the fan
charts for mortality rates at age 25 for each of the LC and GP models fitted to mortality
data for the age range 1~79. The fan under the GP model is significantly wider than
those under the LC model, which results from the multiple risk sources of the GP
model. This reflects that at the younger age, the forecasting performance of the LC
model underestimates the risk associated with the forecast levels of uncertainty.

The bottom panel of Figure 9 shows the fan charts for mortality rates at age 65 for
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each of the LC, CBD, and GP models, As mentioned in Subsection 4.3, the LC and
CBD models are estimated using mortality data for the age range 60~79, and the GP
model is estimated using mortality data for the age range 1~79. We observe that the
widths of confidence intervals of the fans are broadly similar,

Information regarding forecast levels of uncertainty is valuable for pension providers
or insurers to hedge future unexpected liabilities. We shall look at hedging strategy for

the mortality risk using g-forwards.

2. Hedging Longevity Risk using g—forwards

A newly emerging life market offers risk management opportunities against mortality
risks such as brevity risk(i.e., the risk of premature death) and longevity risk(i.e., the
risk of living too long). Mortality-linked securities and derivatives have been extensively
developed by academic communities as well as industry specialists,(e. g, , longevity bond(Blake
2001), k-forward(Chan et al,, 2014; Tan et al., 2014), g-forward(Coughlan et al,, 2007)), and
theoretical frameworks for pricing them have been established(Cairns et al., 2000b;
Loeys, 2007; Bauer, 2010; Barrieu, 2012), The payoff structure of such products is
basically expressed as a function of current expectations for future mortality rate or
indexes related to mortality rate, Thus, finding the most efficient estimator and
assessing forecast levels of uncertainty in projections play key roles in mortality risk
management,

As a simple example, we consider a pension provider's hedging strategy against
unexpected liabilities owing to longevity risk. The pension provider uses g-forward
derivatives launched by J. P, Morgan in 2007. Figure 10 illustrates the transaction
between party A(e.g., a pension provider) and party B(e.g., a bank), The settlement of

g-forward contract at maturity is given by
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NX (qf —q,) for party A
Nx(q,—q;)  for party B,

where NV is the notional amount, ¢, is the fixed mortality rate determined at the time

of evaluation, that is, the best estimate, and ¢, is the realized mortality rate at the time

of maturity, T, Using g-forwards, pension providers can hedge against the risk of
{Figure 9) (Color online) The top panel shows the fan charts at age 25 for the
LC model(short) and the GP model(long). The bottom panel shows the fan charts

at age 60 for the LC model(short), the CBD model(middle), and the GP
model(long). The dots represent historical mortality rates for period 1983—2010.
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decreasing mortality of plan members, and life insurers can protect themselves against
significant increases in the mortality of policyholders. For example, when unexpected
reduction in mortality rate arises, the pension provider can cover the loss owing to the
longevity risk by receiving more funds from the bank,

(Figure 10) A g—forward transaction at Maturity, T

Notional x fixed mortality rate

Party A > PartvB

( fixed rate payer ) < ( fixed rate receiver )

Notional x realized mortality rate

We examine the hedging performance for a hypothetical pension plan containing
one pensioner aged 65. It pays the pensioner $1 at the beginning of each year starting
from a certain age until the pensioner dies or attains age 90. For simplicity, we assume
that there are no other risk sources such as credit, sampling, and basis risk. Then, the

present value of the unexpected cash flows, X, from the plan is given by

X = Vit = BV viapitiva): (5.1
where V4, i the present value of the realized liability, and £ ( VLiability) is the
present value of the best estimated liability. The present value of the unexpected cash
flow from the hedged portfolio, i.e., the liability with additional hedging portfolios, is
written as

X5 = Vit = BV Liaviiey) = MV areage = BV igeage )l (5.2)

where Vg0 is the present value of all payoffs from a hedging instrument(here,
g-forward), and h is the number of units held of the hedging instrument, Hedge
effectiveness is evaluated based on the amount of longevity risk reduction(LRR)
defined by
where o (X) is the standard deviation of portfolio X, A higher value of LRR indicates

better hedge effectiveness. Figure 11 shows the distribution of the two portfolios



BN =sizses xera mis

2 *
X

Longevity Risk Reduction(LRR) = 1 — y

o (X)

) (5.3)
obtained by using 5,000 simulation paths. The distribution of the hedged portfolio is
narrower than that of the unhedged one. Here, all cash flows were discounted at a 3%

interest rate. Table 7 presents the results of hedge effectiveness assessment for three

different ages. o,

unhedged ANd Opeqq0q are the standard deviations for the unhedged

and hedged portfolios, respectively, The LRRs are 90% at age 60 and 92% at ages 65
and 70. The hedge ratio h at age 60 is 6.4, implying that the optimal number of
g-forward contracts is 6.4, or rounding to the nearest whole number, 6, The high LRR
values reflect the high hedging effectiveness of g-forwards against mortality risk, As
shown above, mortality rate predictions and their uncertainties play key roles in the
management of mortality risk using q-forwards(as well as other mortality-linked
products such as S-forwards, longevity swaps, and k-forwards), The GP optimally

provides age-specific risk factors for the estimates.

(Table 7) Hedge effectiveness

Age O unhedged Ohedged h LRR
60 0.0912 0.0288 6.4 90%
65 0.158 0.0433 7.2 92%
70 0.239 0.0676 8.8 92%

VI. Concluding Remarks

In this study, we constructed the GP model using mortality data for South Korean
males, The six age/period functions and cohort effects are identified as the key factors
for fitting the data, These factors are also shown in the GP model for the UK mortality
data; however, the UK GP model has another age function for middle-age mortality between ages
55~65(Hunt and Blake, 2014), which reflects different demographic profiles between the two nations,
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(Figure 11) Distributions of the present values of
the hedged and unhedged portfolios
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The key finding of this study is that the GP model consistently outperforms the other
seven models when evaluated based on both in-sample fit tests using the BIC and
out-of-sample fit tests using the MAPE, achieving robustness against parameter
uncertainties,

The analysis on the fluctuations of mortality indexes may be an interesting topic for
future research, Hanewald(2012) and Niu and Melenberg(2013) investigate the
dynamic relationships between the Lee-Carter mortality index and variables such as
leading causes of death, real growth rates, and employment rates, Using the GP
mortality indexes can give more detailed information on mortality dynamics, since they
provide age-specific mortality indexes, unlike the Lee-Carter mortality index which
provides only the overall improvement of mortality rate, Lim et al.(2014) present an
analysis on the trends of leading causes of death for South Korean, which would

usefully serve to investigate the research,



BEN =sizses xera mis

References

Antolin, P., “Longevity Risk and Private Pensions, OECD working papers on
insurance and private pensions’, OECD publishing, No. 3, 2007,
doi:1.1787/261260613084.

Barrieu, P., Bensusan, H., El Karoui, N, Hillairet, C,, Loisel, S., Ravanelli, C,, and
Salhi, Y., “Understanding, modelling and managing longevity risk: key
issues and main challenges”, Scandinavian Actuarial Journal, Vol, 2012, No,
3, 2012, pp. 203-231.

Bauer, D., Boerger, M., and Russ, J., “On the pricing of longevity-linked
securities’, Insurance, Mathematics and Economics, Vol, 46, No, 1, 2010,
pp. 139-149.

Blake, D and Burrows, W. “Survivor Bonds: Helping to Hedge Mortality Risk’,
Journal of Risk and Insurance ,Vol, 68, 2001, pp. 339-348.

Booth, H., Maindonald, J., and Smith, L., “Applying Lee-Carter under conditions of
variable mortality decline”, Population Studies, Vol. 56, 2002, pp. 325-336.

Brouhns, N,, Denuit, M., and Vermunt, J. K., “A Poisson Log-Bilinear Regression
Approach to the Construction of Projected Lifetables’, Insurance:
Mathematics and Economics, Vol. 31, 2002, pp. 373-393.

Cairns, A. J. G., Blake, D., and Dowd, K., “A two-factor model for stochastic
mortality with parameter uncertainty: Theory and calibration”, journal of
Risk and Insurance , Vol, 73, No. 4, 2000a, pp. 687-718.

, ‘Pricing Death: Frameworks for the Valuation and Securitization of
Mortality Risk”, ASTIN Bulletin, Vol, 36, No, 1, 2006b, pp. 79-120,

Cairns, A., Blake, D., Dowd, K., Coughlan, G. D., Epstein, D., Ong, A., and

Balevich, I, “A quantitative comparison of stochastic mortality models using

data from England and Wales and the United States”, North American



The Performance Evaluation on the General Procedure for Forecasting Mortality 131

Actuarial Journal, Vol, 13, No. 1, 2009, pp. 1-35.

Cairns, A. J. G., Blake, D., Dowd, K., Coughlan, G, D., Epstein, D., and
Khalaf-Allah, M., “Mortality density forecasts: an analysis of six stochastic
mortality models”, Insurance: Mathematics and Economics, Vol, 48, 2011,
pp. 355-367.

Chan, W. S., Li, J. S. -H., and 1i, J., “The CBD mortality indexes: Modeling and
applications”, North American Actuarial Journal, Vol, 18, No, 1, 2014, pp. 38-58.

Coughlan, G. D,, Epstein, D., Shinha, A, Honig, P., “q-Forwards: Derivatives for
transferring longevity and mortality risk”, J,P, Morgan: London, 2007,

Currie, 1. D., “Smoothing and forecasting mortality rates with P-splines’,
Presentation to the Institute of Actuaries, 2000,

Dowd, K., Cairns, A.J.G., Blake, D., Coughlan, G.D, Epstein, E., and Khalaf-Allah,
M., “Backtesting Stochastic Mortality Models”, North American Actuarial
Journal, Vol, 14, 2010, pp. 281-298,

Girosi, F. and King, G., “A reassessment of the Lee-Carter mortality forecasting
method”, Working Paper. Harvard University, 2005.

Hanewald, K, “Explaining Mortality Dynamics”, North American Actuarial Journal,
Vol, 15, No. 2, 2012, pp. 290-314.

Hari, N., Waegenaere, A., Melenberg, B., and Nijman, T., “Estimating the term
structure of mortality”, Insurance: Mathematics and Economics, Vol, 42,
2008, pp. 492-504.

Hunt, A, and Blake, D., “A general procedure for constructing mortality models”,
Vol, 18, No, 1, 2014, pp. 116-138,

Koissi, M., A, Shapiro, and G, Hognas, “Evaluating and extending the Lee-Carter
model for mortality forecasting: bootstrap confidence interval”, Insurance:
Mathematics and Economics, Vol, 38, 2006, pp. 1-20,

Lee, R, D, and Carter, L. R,, “Modeling and forecasting US mortality”, Journal of the



HE2%T K27H A5

American Statistical Association, Vol. 87,1992, pp. 659-675.

Lee, R, D, and Miller, T,, “Evaluating the Performance of the Lee-Carter Approach
to Modeling and Forecasting Mortality”, Demography Vol. 38, No. 4,
November 2001 , pp. 537-549.

Lim, D., Ha, M., and Song, 1., “Trends in the Leading Causes of Death in Korea,
1983-2012", J Korean Med Sci., Vol, 29, No, 12, 2014, pp. 1597-1603,

Loeys, J., Panigirtzoglou, N,, and Ribeiro, R, M., “Longevity: A Market in the
Making”, J. P. Morgan, 2007,

Niu, G., and Melenberg, B., “Trends in mortality decrease and economic growth”,
DP 11/2013-071, 2013,

OHare C, Li, Y., “Explaining young mortality”, Insurance: Mathematics and
Economics, Vol, 50, No. 1, 2012, pp. 12-25.

Plat, R., “On stochastic mortality modeling”, Insurance: Mathematics and
Economics, Vol, 45, No, 3, 2009, pp. 393-404.

Preston, S. H., In Forecasting the Health of Elderly Populations, Manton K G,
Singer B H, Suzman R M, editors, New York, Springer, 1993, pp. 51-77.

Renshaw, A E., and Haberman, S., “A cohort-based extension to the Lee-Carter
model for mortality reduction factors”, Insurance: Mathematics and
[Economics, Vol, 38, 2006, pp. 556-570.

Smith, D, W., Human Longevity, Oxford Univ, Press, New York, 1993,

Tan, C. 1., Li, J., Li, J. -H., Balasooriya, U., “Parametric mortality indexes: From
index construction to hedging strategies’, Insurance: Mathematics and
Economics, Vol. 59, 2014, pp. 285-299.

Tulijapurkar, S., “Mortality declines, longevity risk and aging”, Asia-Pacific_Journal
of Risk and Insurance, Vol, 3, No. 1, 2008, pp. 37-51.



The Performance Evaluation on the General Procedure for Forecasting Mortality m
_9_ Ok
=

572 AR (stochastic mortality models)2 v AEE o=
AREETE AFEE HlolH A R(fitting)S ] Tk FEje] @S0l A4
BA, AT HAs SHAA AE Adu FHTel Avid
A(general procedure)S APdE HIO|HEZRE Ao WE 2
o] & (parametric age functions)E& TAIHCOZE FE3t] Rdg ]
9 ME SHT F Utk oldd £ A= I3 HA e olgg SA ol
APEE Sl o9A TEEEA AR IA gt

1983\ 5-E] 201037bA] dh=Qle] AVdE SAIE o838 dwrd #H3 @
2] AREHE 7709 & AR ES 8 W AYE(in-sample fit)9} FE
9] o & (out-of-sample forecasting)= Hlul F7IPck T2 W A= AR
< #o]X|t HE 7]F(Bayesian information criterion)S, T 9 oS
AL Al 7 eAk HlE(mean absolute percentage error)< ©]-&FT.
Al el AR "AAA~794], 11~794], 60~79A)ell thst 714 Ades dnky
T FHES BTtk ol AMEE d5S ds Bad HA
| 4t g G@AH 4 o) HEE 5 AL, yo] gl
2 HEe HAH 3K overfitting) HAIE o o5 23 NS
d T deS Boenh A" 25E doldest T deshe HiESs
“~(nonparametric period functions), Z%E &I} (cohort effects)™
ALBI A A Al QJIF-EAISH S WESIEE APEE FAIE olsfish=
o Qo] Fesith g debd BHe] o g3 A (multiple risk
factors)v= Aa, BFAIFANA v APGEC AFE g3 s FAsa #
gt v F8eA AHEE g Aok E8AHIE AT AeA AR
(longevity risk)S At F A5 AFAe] B vg R (future
liabilities) & 57§38t q-Ad&(q-forwards) ©]83 & A|(hedge) HF& =

!

fo

o

.

A
N
)
w1

ek

2 34, &5 AN 2

# 22 MQlof:

o mg
o T






	The Performance Evaluation on the GeneralProcedure for Forecasting Mortality
	Ⅰ. Introduction
	Ⅱ. Constructing Stochastic Mortality Model using the General Procedure
	Ⅲ. Modeling Time-varying Indexes
	Ⅳ. Evaluating Predictive Accuracy
	Ⅴ. Applications to Morality/Longevity-linked Derivatives
	Ⅵ. Concluding Remarks
	References
	요 약




