
This study investigates the forecasting ability of the general procedure(GP) using 

mortality data for South Korean males during 1983-2010. The GP was recently 

introduced to construct a stochastic mortality model by including every significant 

demographic feature in historical mortality data. We assess the GP via a 

comparison with seven existing stochastic mortality models, testing in-sample fit 

and out-of-sample prediction for three age groups: 1-79, 11-79, and 60-79. 

The results suggest that the GP consistently outperforms other models with regard 

to the Bayesian Information Criterion(BIC) and Mean Absolute Percentage Error 

(MAPE). This shows that the GP extracts optimal risk factors for the projections of 

age-specific mortality rates from mortality data. Furthermore, we examine predicted 

levels of uncertainty in forecasts at different ages and show how the risk can be 

hedged using q-forwards. This information is useful for pension providers or 

insurers to hedge future unexpected liabilities. 
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Human mortality decreased significantly in the 20th century(Preston, 1993; Smith, 

1993). During the first part of the 20th century, the decline in mortality primarily 

resulted from the reduction of infectious diseases for younger groups, and during the 

last decades of the 20th century, the decline resulted from the reduction in deaths 

owing to chronic diseases mainly for older age groups(Antolin, 2007). This increase in 

longevity of human life is a blessing, but creates systemic risk in pension systems and 

public retirement systems.

Population forecasts using static life tables would overestimate death rate because 

they do not consider the evolution of mortality over time. An alternative solution is to 

use a stochastic mortality model. Lee and Carter(1992) first proposed a stochastic 

mortality model for forecasting mortality in the US, which is currently being considered 

as the benchmark model. Subsequently, various models have been proposed to 

contain more detailed demographic features such as cohort effects and age-dependent 

differentials(Lee and Miller, 2001; Booth et al., 2002; Brouhns et al., 2002; Girosi and 

King, 2005; Renshaw, 2006; Cairns et al., 2006a; Currie, 2006; H´ari et al., 2008; 

Tulijapurkar, 2008; Plat, 2009; O’Hare, 2012). 

In spite of such developments, it is ambiguous whether these models have enough 

flexibility to represent age-specific differentials in mortality data. Moreover, the models 

suffer from the limitation of universal applicability, because they were designed based 

on the observation of mortality data for a few developed countries, especially the UK.

These problems can be overcome by using the “General Procedure”(GP) developed 

by Hunt and Blake(2014). The GP provides an effective method of capturing all major 

age-dependent demographic features from mortality data and of incorporating them 

into a stochastic mortality model using non-parametric period and parametric age 

functions. Since age/period functions are independent of each other, we are able to 



The Performance Evaluation on the General Procedure for Forecasting Mortality 109

establish the age-specific mortality structure of the population under consideration and 

a distinctive demographic pattern by comparing estimated age/period functions across 

nations. We call the stochastic mortality model built by the GP as the GP model.

The GP model was originally constructed using mortality data from the UK and was 

found to fit well in-sample on the basis of the Bayesian Information Criterion(BIC). 

However, this does not necessary imply that the model is informative regarding 

out-of-sample predictive contents. The GP model could be useful to forecast future 

mortality rates, since it considers all risk factors for projections by obtaining the period 

functions corresponding to age functions. In this study we investigate the accuracy of 

projected mortality rates by the GP model. We  evaluate the forecasting ability by 

comparing out-of-sample forecasting performances of the GP model with those of the 

seven popular models shown in Table 2. To obtain robustness of the out-of-sample 

test, we also examine the impact of parameter uncertainty using the residual 

bootstrapped technique(Koissi et al., 2006). This serves as a test for demonstrating 

computational stability of the GP model. We also present fan charts of the forecasts 

produced by the GP and two other models to show the impact of diverse risk sources 

on mortality rate forecasts. This information is valuable for pension providers and 

insurers to hedge unexpected liabilities.

The remainder of the paper is organized as follows. Section 2 presents a stochastic 

mortality model produced by the GP and assesses its goodness-of-fit.  Section 3 builds 

a time-series forecasting model for the time-varying indexes of the GP model. Section 

4 shows the in-sample fit and the out-of-sample forecasting accuracy of the GP model, 

along with a comparative analysis of the performance of the GP model with those of 

the other models. Section 5 examines the hedge effectiveness of q-forwards using 

sample paths generated by the GP model. Finally, Section 6 summarizes and concludes 

the study.
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            
          

 

(2.1)

1.  Definition of Mortality and Data Source

 To build stochastic mortality models, we use the crude(i.e., unsmoothed) death 

rate   for age   in calendar year :

where calendar year  is defined as running from  to   ; and the average 

population is approximated by the estimate of the population aged  last birthday in 

the middle of the calendar year. The one-year mortality rate    is given by 

    exp  ,                       (2.2)

which is the probability that an individual aged exactly  at exact time  will die 

between  and  . We use the South Korean male mortality data during 1983~2010 

for the age range 1~791).

2.  The GP Model

 We construct a stochastic mortality model using the GP. For brevity, we restrict the 

discussion to points necessary for evaluating its predictive performance. Hunt and 

Blake(2014) provide more detailed information on the GP, such as the identifiability 

constraints and the algorithms for estimating parameters.

STAGE 0. The first step is to fit the mortality data to the model, 

1) The data is obtained from Statistics Korea(KOSTAT). Available at www.kostat.go.kr. 
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<Figure 1> Estimated values of   for Stage 0 

ln     (2.3)

ln       (2.4)

where   is a nonparametric age function to be estimated, which reflects the average 

age-specific pattern of mortality across the full age range. To estimate the parameter 

  and the parameters in the following stages, we use Brouhns’ methodology by 

maximizing the log-likelihood of a Poisson distribution(Brouhns et al., 2002). Figure 1 

displays the estimation results, showing the age pattern of mortality in childhood, 

young adulthood(the accident hump), and senescence.

STAGE 1. For improving flexibility of the model (2.3), the next stage is to add a 

nonparametric age/period term 


  to it: 

where the nonparametric age function 
 and the nonparametric period function 

 

describe the age effect and the period effect, respectively. The two grey lines shown in 

the left and right panels of Figure 2 represent the fitted values of 
 and 

 , 

respectively. To improve the parsimony of the model (2.4), we need to design a 

parametric age function   reflecting the significant demographic feature of 
. 
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<Figure 2> Age functions(left-hand panel) and 

period functions(right-hand panel) for Stage 1

ln        (2.5)

ln          (2.6)

ln           (2.7)

We select a constant function( ∝) describing a general level of mortality for 

all ages. Substituting 
 with  , the updated model is expressed as

The two black lines shown in the left and right panels of Figure 2 represent the 

fitted values of   and 
 , respectively. This substitution provides a trade-off 

between the fit quality and the parsimony of the model.

STAGE 2. Similarly, adding a nonparametric age/period 


 function to the 

model (2.5), we arrive at

The two grey lines shown in the left and right panels of Figure 3 represent the fitted 

values of 
 and 

 , respectively. We use a straight line to capture the dominant 

trend of 
. Substituting 

 with  (∝), we arrive at

The two black lines shown in Figure 3 represent the fitted values of   on the 

left-hand panel and 
 on the right one.



The Performance Evaluation on the General Procedure for Forecasting Mortality 113

ln      
 



 
. (2.8)

<Figure 3> Age functions(left-hand panel) and 

period functions(right-hand panel) for Stage 2

<Figure 4> Nonparametric age(left-hand panel) 

and period(right-hand panel) functions for Stage 7

 STAGES 3–6. We repeat the procedure until the functions   ⋯     are 

obtained. Then, we arrive at 

Table 1 shows the implemented six parametric functional forms and their demographic 

implications: the average level of mortality(  ); the increase in the general level of 

mortality with aging(  ); mortality differentials related to young adult mortality

(  ); childhood mortality(  ); postponement of old age mortality(  ); and an 

accident hump(  ).
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ln      
 



 
     (2.9)

<Figure 5> (Color online) Parametric age functions(left-hand panel) and period 

functions(right-hand panel) scaled by deducting their means and dividing by 

their standard deviations 

STAGE 7. Figure 4 shows the fitted values of 
(left) and 

(right) obtained by 

adding the additional age/period term 


 to the model (2.8). We do not observe 

any significant demographic features in the age function, such as distinct features 

superimposed on a specific age range or trends across the entire age range. Thus, we 

do not consider hidden parametric age functions.

STAGE 8. The final stage is to add the cohort term     to estimate lifelong effects 

specified by different generations. Then, we arrive at the final model: 

where    (i.e., the year of birth). Figure 5 shows the estimation results obtained 

using the model: the left-hand panel shows parametric age functions,  , and the 

right-hand panel the mortality indexes, 
 , scaled by deducting  their means and 

dividing by their standard deviations for convenience sake. The period functions, 
 , 

represent the time-trending behavior of the corresponding age functions  . The 

fitted cohort effects are shown as dots in Figure 7.
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<Table 2> Specifications of the seven stochastic mortality models  

Model Formula
M1 Lee and Carter(1992)

log   
M2 Renshaw(2006)

log    
M3 Currie(2006)

log    
M5 Cairns et al.(2006a)

log


  
 

 

M6 Cairns et al.(2009)

log


  
 

 

M7 Cairns et al.(2009)

log


  
 

 
  

 

M8 Cairns et al.(2009)

log


  
 

  

Note:   is the mean age over the range of ages being used in the analysis.  is the number of ages 

covered in the sample age range. 
  is the mean value of   .  is a constant parameter to 

be estimated. M4 is not included in our analysis. It is the -splines model developed in 
Currie(2006).

<Table 1> Parametric age function and demographic significance

Term 
()

Description ∝
Free 

parameters
Demographic 
significance

1 Constant 1 None
General level of 

mortality

2 Linear  None Gompertz slope

3 Normal exp



  

Young adult 

mortality

4 Put option 
  Childhood mortality

5 Rayleigh exp  
Postponement of 

old age mortality

6 Log-normal 

 exp


ln
  

Peak of accident 

hump
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<Table 3> BIC measures for GP, M1-M3 and M5-M8 models using 

mortality data for South Korean males aged 1-79

Model Log-likelihood BIC

General Procedure -10,895.49 -12,241.69

M1 -17,138.76 -17,855.35

M2 -11,691.97 -13,121.29

M3 -15,478.96 -16,295.71

M5 -115,383.90 -115,599.60

M6 -56,615.52 -57,235.79

M7 -45,644.04 -46,368.33

M8 -33,587.82 -32,959.84

   

 ln   , (2.10)

3. Assessing Model Fit

 In order to assess the goodness-of-fit of the GP model and the other seven models 

listed in Table 2, we use the BIC measure: 

where  is the log-likelihood of the estimated parameter ;   is the number of 

observations; and   is the number of parameters being estimated. It provides a 

trade-off between the fit quality and parsimony of the model. The best estimate is 

chosen based on the highest value of BIC measure. Table 3 shows the BIC scores for 

the eight models estimated using mortality data for South Korean males aged 1~79 

during 1983~2010. The GP model has the highest value of BIC( -12,241.69), making it 

the best-fit model. We also observe that the models, M5~M8, do not deliver significant 

performance results. This is because they were solely designed for higher age groups. 
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          (3.2)

            (3.1)

To examine the future distribution of mortality rates, we build time series models for 

the stochastic variables(i.e., the mortality indexes and cohort effects) of the eight 

models.

1. Modeling GP Mortality Indexes

Chan et al.(2014) suggest a general class of vector autoregressive integrated moving 

average(VARIMA) model for multiple mortality indexes. However, when we applied 

the VARIMA model to the GP indexes, the first and second best-fit models do not pass 

diagnostic tests. Thus, the GP mortality indexes, 
 , are modeled using a multivariate 

random walk with drift(RWD) commonly used to build time-series models for mortality 

indexes(for example, a univariate RWD model in Lee and Carter(1992) and a 

multivariate RWD model in Cairns et al.(2006a, 2011)).

The multivariate RWD process for the mortality indexes    
⋯ 

  is 

defined as follows: 

where ∊    is a constant × vector;  is a constant × upper triangular 

matrix; and   is a six-dimensional standard normal random variable. Vector   

represents the drift and matrix   the volatility of the risk factors, satisfying 

∆    . The volatility matrix   is uniquely determined from ∆  
based on the Cholesky-decomposition. The estimation results are 

and 
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∇ 










     
     
     
     
     

     

            (3.3)                 

 Figure 6 displays the fan charts for the GP mortality indexes obtained by simulating 

1,000 paths. The dashed lines indicate 95% confidence intervals. The projections show 

diverse patterns of trend and level of uncertainty, which reflects own intrinsic features 

of specific age groups for mortality rate projections.

2. Modeling Cohort Effects

We assume that cohort effects,    , are independent of 
. For the time horizon 

of 1983~2010, the year of birth,   , is given from 1904 to 2009, and the cohort 

effects with fewer than 5 observations are excluded from the fitting procedure. Since 

an RWD model is unlikely to be appropriate for modeling cohort effects(Cairns et al., 

2011), we use a more general autoregressive integrated moving average(ARIMA) 

process. The ARIMA() models with      and          are 

considered as candidates. Of these models, the best model is ARIMA(2,0,2) based on 

the BIC. 

Figure 7 shows the fan chart for cohort effects obtained by simulating 1,000 paths. 

We observe a strong discontinuity between 1945 and 1946 relating to the end of the 

Second World War. A similar result is also observed in the cohort effects estimated by 

the GP model for the UK mortality data(Hunt and Blake 2014).
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<Figure 6> Mortality index fan charts, 
 . The dots display the estimates of the 

mortality indexes fitted to the historical data.
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<Figure 7> Cohort effect fan charts    . The dots display the estimates of the 

cohort effects fitted to the historical data.  

In this section, we examine the accuracy of projected mortality rates for the eight 

models. To establish the robustness of our results, we perform out-of-sample 

forecasting experiments for three different age groups: 11~79(younger and older age 

ranges), 1~79(full age range), and 60~79 years(older age range).

1. Mortality Projections for Age Range 11-79

We fit the models to mortality data over the age range 1~79 and over four different 

historical “look-back” windows: (1) 1983~2000; (2) 1983~2001; (3) 1983~2002; and (4) 

1983~2003.

We first evaluate the fitting performances in terms of the BIC. As shown in Table 4, 

the best-fit model is the GP model with the highest BIC measure(marked with the 
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MAPE 
 
  



      (4.1)

symbol *) for all look-back windows. The second-best model(marked with the symbol 

**) is M3 for the look-back window 2001~2010 and M2 for the other look-back 

windows.

Next, we evaluate the forecasting performances over the four different 

“look-forward” windows: (1) 2001~2010; (2) 2002~2010; (3) 2003~2010; and (4) 

2004~2010. Mortality indexes over the windows are generated by using the 

multivariate(or univariate) RWD model fitted to the corresponding look-back 

windows. The models are quantitatively assessed based on the accuracy of projections 

using the mean absolute percentage error(MAPE) between   , the mean forecasts of 

   , and    , historical data: 

where   is the first year of the look-forward horizons and   is the number of 

observations. The MAPE measure is computed only for the age range 11~79 for the 

convenience of not extrapolating the cohort effects    . That is, the cohort effects for 

computing future mortality rates are obtained from the estimations over the look-back 

windows. As shown in Table 4, the GP model is the best-fit model with the smallest 

MAPE measures for all look-forward windows, and the second-best model is M1.

Further, we examine the effect of parameter uncertainty using the residual bootstrap 

methodology proposed by Koissi et al.(2006). Figure 8 displays the mortality index 


 for 500 bootstrap residual matrices over a look-back window of 1983~2000. We 

observe that the underlying pattern of 
 (and also the other indexes, not shown 

here) remain unchanged, which reflects the computational stability of the GP model. 

The MAPE value calculated over the period 2001~2010 is 9.31%, which is close to the 

value of 9.07% in the absence of parameter uncertainty. This (roughly) reflects that 

parameter uncertainty has little impact on ranking the forecasting performance of 

mortality models on the basis of MAPE.
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<Figure 8> (Color online) Mortality index 
 , 500 bootstraps

These results show that the GP model delivers the best performance in terms of 

both in-sample and out-of-sample fit, regardless of the sample types. The second 

model, M2 or M3 in terms of BIC and M1 in terms of MAPE, is highly dependent on the 

sample types. We also observe that the model M5 does not deliver significance 

performance results, since it was designed for higher groups only. 

  

2. Mortality Projections for Age Range 1–79

To simulate mortality rates for the age range 1~79, we need to specify stochastic 

processes for modeling cohort effects. For the models with the cohort term    , M2, 

M3, M6, M7, and M8, we consider ARIMA() models with      and 

         as candidates and pick the best-fit model among them using the 

BIC measure. The period 1983~2000 is used as the historical look-back window for 

examining ten-year forecasts. As shown in Table 5, the best predictor is the GP model 

with the smallest MAPE measure of 8.24%, and the second-best model is M3 with 11.12%.
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3. Mortality Projections for Age Range 60–79

For the age range 60~79, the models M1~M3 and M5~M8 are fitted into the mortality 

data for a back-ward window of 1983~2000, and time-series models are also 

constructed. However, the GP model is fitted to the age range 1~79, because the 

model already has the age functions characterizing age-specific demographic features 

over the range. Among the parametric age functions, only the three functions,   , 

 , and   effectively contribute to the projections. The others have little effect on 

the projections, since their values are near zero in the range as shown in the left panel 

of Figure 5. This might be a penalty to the GP model owing to some poor-fit arising 

from the difference between the fitting age range and the evaluating one. 

The MAPE measures are computed over a forward window of 2001~2010. As shown 

in Table 6, the GP model is the best predictor with the smallest MAPE measure of 

2.82%, and the second-best model is M3. 

1. Comparison of Mortality Fan Charts 

For the LC(M1), CBD(M5), and GP models, we look at the volatility of projections of 

mortality rates at younger and older ages. The top panel of Figure 9 shows the fan 

charts for mortality rates at age 25 for each of the LC and GP models fitted to mortality 

data for the age range 1~79. The fan under the GP model is significantly wider than 

those under the LC model, which results from the multiple risk sources of the GP 

model. This reflects that at the younger age, the forecasting performance of the LC 

model underestimates the risk associated with the forecast levels of uncertainty. 

The bottom panel of Figure 9 shows the fan charts for mortality rates at age 65 for 
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each of the LC, CBD, and GP models. As mentioned in Subsection 4.3, the LC and 

CBD models are estimated using mortality data for the age range 60~79, and the GP 

model is estimated using mortality data for the age range 1~79. We observe that the 

widths of confidence intervals of the fans are broadly similar.

Information regarding forecast levels of uncertainty is valuable for pension providers 

or insurers to hedge future unexpected liabilities. We shall look at hedging strategy for 

the mortality risk using q-forwards. 

2. Hedging Longevity Risk using q-forwards

A newly emerging life market offers risk management opportunities against mortality 

risks such as brevity risk(i.e., the risk of premature death) and longevity risk(i.e., the 

risk of living too long). Mortality-linked securities and derivatives have been extensively 

developed by academic communities as well as industry specialists,(e.g., longevity bond(Blake 

2001), k-forward(Chan et al., 2014; Tan et al., 2014), q-forward(Coughlan et al., 2007)), and 

theoretical frameworks for pricing them have been established(Cairns et al., 2006b; 

Loeys, 2007; Bauer, 2010; Barrieu, 2012). The payoff structure of such products is 

basically expressed as a function of current expectations for future mortality rate or 

indexes related to mortality rate. Thus, finding the most efficient estimator and 

assessing forecast levels of uncertainty in projections play key roles in mortality risk 

management. 

As a simple example, we consider a pension provider’s hedging strategy against 

unexpected liabilities owing to longevity risk. The pension provider uses q-forward 

derivatives launched by J. P. Morgan in 2007. Figure 10 illustrates the transaction 

between party A(e.g., a pension provider) and party B(e.g., a bank). The settlement of 

q-forward contract at maturity is given by 
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×    for  
×    for  

<Figure 9> (Color online) The top panel shows the fan charts at age 25 for the 

LC model(short) and the GP model(long). The bottom panel shows the fan charts 

at age 60 for the LC model(short), the CBD model(middle), and the GP 

model(long). The dots represent historical mortality rates for period 1983-2010. 

where   is the notional amount,   is the fixed mortality rate determined at the time 

of evaluation, that is, the best estimate, and   is the realized mortality rate at the time 

of maturity, T. Using q-forwards, pension providers can hedge against the risk of 
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<Figure 10> A q-forward transaction at Maturity, T

              (5.1)

 ∗                         (5.2)

decreasing mortality of plan members, and life insurers can protect themselves against 

significant increases in the mortality of policyholders. For example, when unexpected 

reduction in mortality rate arises, the pension provider can cover the loss owing to the 

longevity risk by receiving more funds from the bank.

We examine the hedging performance for a hypothetical pension plan containing 

one pensioner aged 65. It pays the pensioner $1 at the beginning of each year starting 

from a certain age until the pensioner dies or attains age 90. For simplicity, we assume 

that there are no other risk sources such as credit, sampling, and basis risk. Then, the 

present value of the unexpected cash flows, X, from the plan is given by 

where   is the present value of the realized liability, and   is the 

present value of the best estimated liability. The present value of the unexpected cash 

flow from the hedged portfolio, i.e., the liability with additional hedging portfolios, is 

written as

where   is the present value of all payoffs from a hedging instrument(here, 

q-forward), and h is the number of units held of the hedging instrument. Hedge 

effectiveness is evaluated based on the amount of longevity risk reduction(LRR) 

defined by 

where  is the standard deviation of portfolio X. A higher value of LRR indicates 

better hedge effectiveness. Figure 11 shows the distribution of the two portfolios 
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Longevity Risk Reduction(LRR)  


  ∗
                   (5.3)

<Table 7> Hedge effectiveness 

Age   h LRR

60 0.0912 0.0288 6.4 90%

65 0.158 0.0433 7.2 92%

70 0.239 0.0676 8.8 92%

obtained by using 5,000 simulation paths. The distribution of the hedged portfolio is 

narrower than that of the unhedged one. Here, all cash flows were discounted at a 3% 

interest rate. Table 7 presents the results of hedge effectiveness assessment for three 

different ages.  and  are the standard deviations for the unhedged 

and hedged portfolios, respectively. The LRRs are 90% at age 60 and 92% at ages 65 

and 70. The hedge ratio  at age 60 is 6.4, implying that the optimal number of 

q-forward contracts is 6.4, or rounding to the nearest whole number, 6. The high LRR 

values reflect the high hedging effectiveness of q-forwards against mortality risk. As 

shown above, mortality rate predictions and their uncertainties play key roles in the 

management of mortality risk using q-forwards(as well as other mortality-linked 

products such as S-forwards, longevity swaps, and k-forwards). The GP optimally 

provides age-specific risk factors for the estimates.

In this study, we constructed the GP model using mortality data for South Korean 

males. The six age/period functions and cohort effects are identified as the key factors 

for fitting the data. These factors are also shown in the GP model for the UK mortality 

data; however, the UK GP model has another age function for middle-age mortality between ages 

55~65(Hunt and Blake, 2014), which reflects different demographic profiles between the two nations.
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<Figure 11> Distributions of the present values of 

the hedged and unhedged portfolios

The key finding of this study is that the GP model consistently outperforms the other 

seven models when evaluated based on both in-sample fit tests using the BIC and 

out-of-sample fit tests using the MAPE, achieving robustness against parameter 

uncertainties. 

The analysis on the fluctuations of mortality indexes may be an interesting topic for 

future research. Hanewald(2012) and Niu and Melenberg(2013) investigate the 

dynamic relationships between the Lee-Carter mortality index and variables such as 

leading causes of death, real growth rates, and employment rates. Using the GP 

mortality indexes can give more detailed information on mortality dynamics, since they 

provide age-specific mortality indexes, unlike the Lee-Carter mortality index which 

provides only the overall improvement of mortality rate. Lim et al.(2014) present an 

analysis on the trends of leading causes of death for South Korean, which would 

usefully serve to investigate the research.
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요 약

  확률적 사망모형(stochastic mortality models)은 미래 사망률 예측에 널리 

사용된다. 사망률 데이터 적합(fitting)을 위해 다양한 형태의 모형들이 제시

됐지만, 범용성과 최적화 측면에서 한계를 지닌다. 최근에 소개된 일반적 과

정(general procedure)은 사망률 데이터로부터 연령에 따른 모든 모수적 나

이 함수(parametric age functions)를 단계적으로 추출하여 모델링하므로 기

존의 한계를 극복할 수 있다. 이에 본 연구는 일반적 과정의 이러한 특징이 

사망률 예측에 어떻게 구현되는지 살펴보고자 한다.   

  1983년부터 2010년까지 한국인의 사망률 통계를 이용해 일반적 과정과 널

리 사용되는 7개의 확률적 사망모형의 표본 내 적합도(in-sample fit)와 표본 

외 예측력(out-of-sample forecasting)을 비교 평가했다. 표본 내 적합도 검정

은 베이지안 정보 기준(Bayesian information criterion)을, 표본 외 예측력 

검정은 절대 평균오차 비율(mean absolute percentage error)을 이용했다. 

세 개의 연령 집단(1~79세, 11~79세, 60~79세)에 대한 검정 결과는 일반적 

과정의 우수한 수행력을 보여주었다. 이는 사망률 예측을 위해 필요한 최적 

변수들이 일반적 과정의 단계적 분석에 의해 검출될 수 있고, 나이 함수에 

대한 모수적 접근은 과적합(overfitting) 문제를 줄여 예측 결과의 신뢰성을 

높일 수 있음을 보여준다. 추정된 모수적 나이함수와 그에 대응하는 비모수

적 기간함수(nonparametric period functions), 코호트 효과(cohort effects)는 

사회경제적 그리고 인구통계학적 의미를 내포하므로 사망률 추세를 이해하는 

데 있어 중요하다. 또한, 일반적 과정의 다중 리스크 인자(multiple risk 

factors)는 연금, 보험시장에서 미래 사망률에 연관된 리스크를 추정하고 관

리하는 데 유용하게 사용될 수 있다. 활용사례로 연금 시장에서 장수위험

(longevity risk)을 살펴봤다. 즉 연금 지급자의 불확실한 미래부채(future 

liabilities)를 추정하여 q-선물(q-forwards)을 이용한 헤지(hedge) 전략을 논

했다.

※ 국문 색인어: 일반적 과정, 확률적 사망 모형, 표본 외 예측력, q-선물, 장수

위험
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