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. Introduction

The effects of “news” in monetary actions appear in the empirical macro
literature (Milani and Treadwell, 2012). Coincident with news about fiscal
actions existing work typically posits that monetary policy shocks—the
non-systematic component of policy distinguished from its systematic
responses to inflation and output fluctuations—which will be realized in the
future are well anticipated by private agents.

Given the nature of institutional structure of policy decisions, it is
remarkable that degrees of foresight about future monetary actions are
intrinsically different from news about changes in taxes or government
spending. In the context of fiscal policy, there is a plethora of literature
documenting how agents would learn today about shocks that will hit far into
the future, as well as well-established evidence of this happening (Poterba,
1988; Ramey and Shapiro, 1998; Yang, 2005; Mertens and Ravn, 2010; Ramey,
2011; Leeper et al., 2013). However, it may be different in the monetary policy
context. As both Blinder et al. (2001) and Goodfriend (2010) point out, the
Federal Reserve's communicating more openly with the public in terms of
interest rate policy is a relatively recent phenomenon that has occurred since
the mid-1990s. This finding suggests that any ability of the public to anticipate
future monetary policy shocks may have to be a lot more limited than that in
the existing literature.

The main objective of this paper is to examine the role of an alternative
assumption about how information about future monetary policy shocks flows
to private agents. In particular, I study the empirical implications of future
monetary policy shocks unanticipated by agents, using an estimated new

Keynesian dynamic stochastic general equilibrium (NK-DSGE) model
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framework. Before detailing the main information structure of this article, I
introduce two benchmark specifications for ease of explanation. Both
information structures assume agents perfect observation on exogenous
shocks, but the only difference between them is the presence of anticipated
components of monetary policy shocks. In the first benchmark structure, there
is only a contemporaneous innovation in monetary policy, and any changes in
the innovation are directly observed by agents. In reference to Milani and
Treadwell (2012), the second benchmark specification posits that they receive
news about future monetary policy shocks which take the i.i.d. form as
examined in Schmitt-Grohe and Uribe (2012).

In contrast to the information flows as above, the main information
specification of this paper employs agents incapability of accessing future
shocks on monetary policy. In this specification, agents know that the
underlying monetary policy rule obeys the i.i.d. specification as in the second
benchmark. In addition, they possess perfect information about current
exogenous shocks, including the current component of monetary policy
shocks. Agents, however, have no foresight on the future components of
monetary policy shocks. Consequently, the difference between the second
benchmark and main information structures is attributable entirely to the
anticipation of future monetary policy shocks.

These information structures are inserted into an otherwise standard
NK-DSGE model. Together with monetary policy at various horizons, two
more shocks drive economic fluctuations in the NK-DSGE model. They are
shocks to technology and household preference, both of which are modeled as
first-order autoregressive processes. The models are estimated on quarterly
U.S. data ranged from 1967:Q1 to 2008:Q1. The estimation results are then

compared across the information structures based on the following criteria:
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Overall model fit, impulse responses, and spectrums of model-implied data.l
The only difference across the three models is their information structures,
thus, any variations in these quantities should correspond to an assessment of
the information specifications.

The first contribution of this paper is to illuminate the role of the
information structure endowed with the unanticipated future monetary policy
shocks. Three main findings are obtained regarding this issue. First, this
information structure turns out to be the best favored specification by the U.S.
time series data. It significantly improves the model’s fit to the data compared
to the conventional contemporaneous-shocks-only counterpart. On the other
hand, there is almost no gain of embedding monetary policy news shocks in
enhancing model fit. Note that this finding is robust to various measures of
model fit, including the posterior marginal density as in Geweke (1999),
deviance information criterion as in Spiegelhalter et al. (2002), and Bayesian
predictive information criterion as in Ando (2007).

Second, incorporating future components of monetary policy disturbances
unobservable to agents improves the model's performance by producing more
data-consistent short-run fluctuations in interest rate dynamics. I find that
embedding the information structure generates additional high frequency
variations in the nominal interest rate, which fosters the statistical
relationships between the model-generated interest rate series and actual
data.

Third, the information structure induces a more persistent equilibrium even
though it relies less on the persistence generated by internal propagation
mechanisms, such as habit formation in consumption. The underlying
1) The choice of model-implied spectrums as a part of model comparison is guided

by Walker and Leeper (2011), who argue that alternative information structures,
such as news or noise, alter the persistence of a model's equilibrium.
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mechanism of this phenomenon is in line with Granger (1966), who argues
that the “typical spectral shape” of macroeconomic time series allocates most
of the spectral power to low frequencies. The less persistent equilibrium
interest-rate process caused by augmenting unanticipated future monetary
policy shocks is corrected through higher estimates for the shock
autocorrelation parameters. Consequently, the equilibrium dynamics induced
by non- policy shocks becomes relatively more persistent than the other
information structures assuming agents’ complete information.

Having established these empirical properties, the second contribution of
the article is to explore the quantitative importance of agents” foresight about
future monetary policy shocks to the business cycle. Based on the estimates
from the model with the unanticipated future monetary policy shocks, I
conduct a counterfactual analysis on agents information flows for future
monetary policy shocks in which they are assumed to be perfectly anticipated
by agents. This analysis makes two key points. First, the fluctuations in output
and inflation as well as nominal interest rate would have been milder if agents
had possessed perfect foresight about future monetary pol- icy shocks. More
importantly, the gap between the actual and counterfactual series is much
more pronounced in the sample prior to the 1990s, indicating that agents’
observability of future monetary policy shocks matters more for the
macroeconomic performance of this period than the later sample. Note that
this finding is consistent with the historical evidence on changes in the Federal
Reserve's communication strategy toward greater transparency since the early
to mid-1990s, as in Blinder et al. (2001), Blinder et al. (2008), and Goodfriend
(2010).

Second, uncertainty about future monetary policy emerged from the model

has significant explanatory power for disagreement—cross-sectional dispersion
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of forecasts—in the Survey of Professional Forecasters (SPF). In particular, the
model-implied output series driven by the policy uncertainty tracks the trend
component of the corresponding SPF disagreement series quite closely. This
finding provides a supportive view of Dovern et al. (2012), who insist that a
crucial factor affecting variations in the cross-sectional dispersion of forecasts
is uncertainty about monetary policy.

This paper is closely related to the literature seeking the role of either
“news” or “noise” in NK-DSGE models. Milani and Treadwell (2012) illustrate
the effects of anticipated (news) and unanticipated monetary policy shocks. A
primary difference of this paper from Milani and Treadwell (2012) is to
explore the implications of future monetary policy shocks unanticipated by
agents. From a different perspective, Collard et al. (2009) and Levine et al.
(2012) argue that the agents’ imperfect information assumption improves the
models’ fit relative to the models that possess complete information. A
common feature of both studies is to exploit agents imperfect knowledge of
the occurrence of exogenous shocks in the current period by positing that the
number of fundamental shocks exceeds the number of observable variables
measured with errors.2) Then this setup creates confusion in agents so that
imperfect information models benefit from the anonymity of the types of
current shock. Unlike these works, the main source of imperfect information
that this paper utilizes is private agents inability to observe future shocks on
monetary policy, while they have perfect knowledge of the occurrence of

exogenous shocks in the current period.

2) In this context, agents misperception between permanent and transitory shocks
is employed extensively for specifying total factor productivity shocks in the
business cycle literature. For example, see Boz et al. (2011) and Blanchard et
al. (2012).
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[I. The Model

This section presents the baseline model. The model is a standard new
Keynesian model featuring both nominal price rigidities a la Calvo (1983) and
Yun (1996) and real rigidity in the form of internal habit formation in

consumption.

1. Households

A representative household chooses sequences {ct,nt,bt};ozo to maximize

expected lifetime utility, given by,

e} (ct_ﬁctfl)l_g ’I’L}+’]
t o £
Eotgoﬁ ut{ 1—o X 1+7 ) (1)

where 3 is the subjective discount factor, 1/¢ is the intertemporal elasticity

of substitution, 1/7 is the Frisch elasticity of labor supply, ¢, is consumption
of the final good, ¥¢,_; is an internal habit stock where 9<[0,1), and n, is

labor hours. u, is a preference shock that follows

u, = ulu, |/ uw)exple, ),

where u is the mean, 0 < p, < 1, and &, , ~ N(0,02).

The representative household's choices are constrained by
¢, +b, =wm, +r,_b,_/m +T,

where 7, = p,/p,_ is the gross inflation rate, w, is the real wage, 7, is a

lump-sum tax, b, is a one-period real bond, and 7, is the gross nominal
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interest rate. The representative household's optimality conditions imply

>
| |

( —Je, _ )70_ﬁﬁEt[ut+1(Ct+1_ﬁct)iﬂk

~
|

= <Xutnt)/wt7
A, =pr Et(At+1/7Tt+1)’

where /A, denotes the Lagrange multiplier on the budget constraint.

2. Firms

The production sector consists of monopolistically competitive intermediate
goods producing firms who produce a continuum of differentiated inputs and
a representative final goods producing firm. Each firm i€[0,1] in the
intermediate goods sector produces a differentiated good, v, (i), with identical
technologies given by ¥, (i) =n, (i), where n,(i) is the level of employment
used by firm ¢. Each intermediate firm chooses its labor supply to minimize its
operating costs, w,n, (i), subject to its production function.

Using a Dixit and Stiglitz (1977) aggregator, the representative final goods

producer purchases y, (i) units from each intermediate firm to produce the
SPINCIRT VTR

final good, y, = [ f y, (i) ”di} , where 6,>1 is the price
0

elasticity of

demand for good ¢. Maximizing profits for a given level of output yields the

demand function for intermediate inputs, y,(i)= (p,(i)/ pt)_a”yt, where

1/ 0,
f p, (i)' "dz} is the price of the final good. Following Calvo

(1983), a fraction of intermediate firms, w cannot update their prices each

period. Firms that are unable to optimally reset their price partially index their
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price to past inflation according to p, (i) =p,_,(i)m}_ 7'~ *, where A€ [0,1]
is the degree of indexation and 7 is steady state inflation. Thus, firms that are

*
able to reset their price at ¢ choose their optimal price, p,, to maximize the

expected discounted present value of real profits, £, Y, w" g, ,d, (i),

k=t
k
where ¢, , =1 and ¢, , = q;—1,; is the discount factor between periods ¢
j=t+1
and k£ > t. The optimality
condition is given by
= — 0
. E A ”
p_t: 91) t(g:t(ﬁw) s[ps/(ﬂ-t,spt)} wsys _ ep xl,t
pe 0,—1 - _ — 0,—1 0 _1x2,t7
g Et Z (ﬂw)s tAs [ps/(ﬂ-t,spt)] wsys g (2)
s=1
. . s—1 -
where 7, ,=1 and m, ;= Hﬂjﬁrl*A for s > t. Written recursively z; ; and
j=t

Xy, are given by
. —1)0, 0, _—\0,
Ty, = Aawy, + o PE T T T 1

(1—=X)(1—9)) 0,—1 _A(1-9,)
Lot — Ny, + Bwm "E, [77/«%1 Ty 332A,t+1] :

The optimal firm pricing equation, (2), and the aggregate price index imply

(1-x(1-6,) 6,-1 rx(1-6,) 1-90,
wT Yt omy ! :17(17w)(ﬂpxl,t/x2,t) )

where p,=0,/(6,—1) is the markup of price over marginal cost when

prices are flexible.

1
Aggregate output is given by ¥,y, = n,, where ¥, = f (p, (0)/p;) b
0

measures price dispersion, which, written recursively, is given by
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-0 (A=1)8, 6, —x0
v, =(1—w)pfz,/r,,) "Hwr ot /A

3. Monetary Policy

Before describing the main information structure on monetary policy rules
of this article, which is named as the partial-foresight information structure, I
introduce two benchmark specifications for ease of explanation. In the first

benchmark specification, the monetary authority sets policy according to

ry =1 [F Dy )] Texple,,), 3)

where ¢, and ¢, measure the policy responses to inflation and output
growth, and ¢, , ~ N(0,07). This monetary policy rule is the conventional one
that appears throughout the modern macroeconomics literature. In this
specification, agents have no foresight about future realizations of the
monetary policy shocks. I denote this “No-Foresight.”

The second benchmark specification simplifies the news process in

Schmitt-Grohe and Uribe (2012) and is given by
) — —\¢.. b, 117 Pr ,, 2 3
Ty = T;rfl[T(Wt/ﬂ)ou(yt/yt—l)%] peXp(sg,t+8i,t+gi,t+8i.t+“')’ )

where ¢,’, denotes the k;-period anticipated changes in the log deviation of

the nominal interest rate from its steady state and ,’, ~ N(0,(0,”)*). These

shocks are assumed to be independent across time and anticipation horizon,

ie., E<83-,t7j8f,t7k):0 for any k= j and E(s;’iytefyt)zo for any k= j. The
information set of the agent consists of current and past realizations of the

exogenous shocks Szf By observing S?t for example, agents know precisely

how this shock will impinge upon 7, and agents will respond as soon as the
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shock is observed. I refer to this information structure as “Complete-Foresight.”

The main information structure on monetary policy is similar to
Complete-Foresight except for agents incapability of anticipating future
monetary policy shocks. In this specification, agents know that the underlying
monetary policy rule obeys the same specification as in Complete-Foresight,
given by equation (4). They observe contemporaneous realizations of the
exogenous shocks, including the current component of monetary policy
shocks (sg,t), but not the future components of monetary policy shocks (sf{t
for all k;>0). This information structure on monetary policy shocks is
denoted as “Partial-Foresight.”

In sum, the difference between Complete- and Partial-Foresight is
attributable entirely to the anticipation of future monetary policy shocks.
Under the Complete-Foresight specification, agents have foresight over
discretionary monetary policy changes in the future, whereas Partial-Foresight
assumes that they are unaware of realizations of future monetary policy
shocks. Both specifications, however, would coincide regarding the agents

ability to perfectly specify the current components of exogenous shocks.

4. Equilibrium

In equilibrium, good market clearing imposes ¢, =¥,. Under the

No-Foresight specification, the log-linear equilibrium system is given by

~ — “ - 1 — ~
A= m [ﬂﬁE;‘,(cH—l) —(1 +ﬂ192)ct+ﬁct71] - m [ﬂﬁE;‘,(ut-%—l) —u,l (5)
A== wt ©

/Tt: Et/l:ﬁr (7:7:_ Emyy4) )
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= (1= o)t g+ A) + Bw Bz, o+ 0,71 — A0, | ®
Ty = (1= ) (y+ A) + B {wy, 1+ (0, — D, — A(1—6)7,} ©)
wlm=Am_ )= (1= w)(zy,—x,,) (10)
=+ A= p) [0+ 6, (h— v 1) ]+ e (11)
Y= 2, (12)
U= Pty 8y (13)

where z, represents the technology shock process, which is common across

firms and follows

~ —

2= Pzt ey, (14

0<p <1 ande,, ~ N(0,07).
To simplify the system, subtract (8) from (9) to obtain

— —

L™ Lo (1= Bw)w,+ ﬂw(szl,H 1~ Bzt By — )\Wt)-

Then use (10), which implies

T To— 1—w (7Tt,_ Etﬂ—t+1)’

to substitute for x; —, and simplify to obtain

~ (1-pw)l-w) ~ 6 —
™= s w,+ N B, o+

t w(1+ﬂ)\) Tp—1- 15)

A
116X
The equilibrium system is given by (11) through (14), a New Keynesian

Phillips curve (derived by combining (5), (6), and (15)), and the IS equation

(obtained jointly from (5) and (7), together with y, =c,). Finally, the

equilibrium system for the Complete- and Partial-Foresight specifications can
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be derived by altering the equation (11).

The baseline specifications in this paper assume no price indexation (i.e.,
A =0). Backward indexation is often added to a NK-DSGE model to generate
inertia in inflation dynamics observed in the data. Hence, having no
indexation is a reasonable benchmark for the main purpose of this work,
which examines how alternative specifications of information flow affect the
persistence of model-generated processes. The sensitivity analysis in the later
sections considers alternative specifications including the models with
estimated price indexation as well as the models with perfect price indexation

(i.e., A=1) as in Christiano et al. (2005) and Collard et al. (2009).

lll. Inference

The model parameters O = {a,n,z?,qbﬂ,qby,pr,pz,pu, [of]kz O,JZ,ou,wE,?}
are estimated using Bayesian inference methods to construct the parameters’
posterior distribution, which integrates the likelihood function with prior
information (see An and Schorfheide (2007) for a survey). I use U.S. quarterly
data on the output, inflation, and nominal interest rate from 1967:Q1 to
2008:Q1 as observable variables. I detrend the logarithm of each time series
with its own linear trend as in Collard et al. (2009), except for the nominal

interest rate, which is detrended by the trend in inflation.

1. ldentification of Various Information Structures

As a first step for the estimation procedure, the log-linearized system (5)-

(15) is solved by Sims’s (2002) gensys algorithm. In particular, the No-Foresight
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specification assumes that agents information set at date t consists of the
model endogenous variables as well as structural innovations dated t and
earlier, including the shocks, {Sz,t’eu,ﬁgr,t}' The agents’ information set
associated with Complete-Foresight is an extension of the No-Foresight
specification so that it contains variables dated t and earlier, including the
shocks, {ezyt,euﬁt,egtt,eitt,eftt,...}. Given the monetary policy rule in (4), this
implies that at ¢ the agent has (perfect) knowledge of monetary policy shocks
which will be realized in the future.

For the Partial-Foresight specification, I use the partial information version
of gensys algorithm by Chris Sims. As mentioned in the previous section, the
primary difference between Complete-Foresight and Partial-Foresight is
agents capability of anticipating future monetary policy shocks, whereas both
information structures posit that they have perfect knowledge about
contemporaneous shocks. In order to be consistent with the Partial-Foresight
setup, the usage of the partial information version of gensys algorithm is to
take out the anticipated component of monetary policy shocks, {S}fvé’?ﬂ}
from the agents' information set. Now, the agents only observe the model
endogenous variables dated ¢ and earlier, and contemporaneous structural
shocks. Therefore, although the agents are aware that monetary policy follows
the rule in (4), they have no foresight about future monetary policy

disturbances under the Partial-Foresight specification.3)

3) By construction, solving the model associated with the monetary policy rule in
(3), instead of (4), by using the partial information version of gensys algorithm
yields the identical solution to that using its complete information counterpart.
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2. Bayesian Inference Procedure

Having obtained the model solution, I then use the Sims optimization
routine csminwel to maximize the log posterior function, which combines the
priors and the likelihood of the data. For this step, I check whether multiple
modes exist by initiating the search for the posterior mode from 50 initial
values. For all the estimated specifications, more than half of the searches
converge to the same likelihood values. Finally, the random walk
Metropolis-Hastings (MH) algorithm simulates 1,000,000 draws, with the first
400,000 used as a burn-in period and every 20th thinned, leaving a sample
size of 30,000.

Columns 2 to 3 in Table 2 list the prior distributions for all estimated
parameters. The prior specifications in this work are mainly taken from
Collard et al. (2009), which is similar to Smets and Wouters (2007). The prior
distribution of risk aversion, o, is a Gamma with mean 1.5 and standard
deviation 0.375, whereas that of the inverse of the Frisch elasticity of labor, 7,
follows a Gamma with mean 2 and standard deviation 0.75. The mean and
standard deviation values of these priors are drawn from Smets and Wouters
(2007). The prior for the consumption habit formation, ¥, and the average

probability of price non-resetting, w, are drawn from Collard et al. (2009)so
that they follow Beta distribution of mean 0.5 and the 95% confidence interval
covers from 0.096 to 0.903. Prior distributions for the rest of the parameters
are coherent with Collard et al. (2009). The nominal interest rate reactions to
inflation, ¢,, and output growth, ¢, are assumed to be positive, with a
normal distribution centered at 1.5 and 0.125, respectively.

For the shock AR(1) parameters, I assume that they follow a beta

distribution with a mean of 0.5 and standard deviation of 0.25 so that the 95%
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percentile interval is ranged from 0.1 to 0.9. An inverse gamma distribution
with a mean of 0.38 and standard deviation of 0.18 is given to the shock
standard deviation parameters, except for the monetary policy shock. I
assume inverse Gamma distribution with mean 0.1 and standard deviation 2
for the standard deviation of current monetary policy shocks as in Milani and
Treadwell (2012). I further assume that the priors on the future components of
monetary policy shocks have mean 0.05 and standard deviation 1, which are
50% of the values used for the current component of monetary policy shocks.
This selection reflects the prior view that the forward-looking components
(whether or not they are anticipated by agents) of discretionary changes in
monetary policy are less significant than their contemporaneous component
in determining the nominal interest rate today. As discussed in Blinder et al.
(2001), the Federal Reserve's communicating more openly with the public is a
relatively recent phenomenon. Given that a large fraction of the data used for
estimation is associated with a period when the Federal Reserve was not
transparent, the asymmetric priors between current and future components of
monetary policy shocks seem to be a reasonable strategy in controlling for the

relative importance of monetary policy shocks of different horizons.

IV. Estimation Results

1. Optimal Horizon for Future Monetary Policy Shocks

The Complete- and Partial-Foresight information structures entail a
selection of future monetary policy shock horizons. In this paper, I choose the

optimal horizon based on various goodness-of-fit statistics, the strategy
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employed by Fujiwara et al. (2011) and Milani and Treadwell (2012).9 To do
so, I use three measures of model fit: (1) the average log marginal density; (2)
the deviance information criterion (DIC) as in Spiegelhalter et al. (2002); and
(3) the Bayesian predictive information criterion (BPIC) as in Ando (2007). The
average log marginal density, calculated by using the Geweke's (1999)
modified harmonic mean estimator, is a conventional measure of model fit for
the class of linearized DSGE models. However, the log marginal densities may
tend to prefer models with extra free parameters to be estimated. Compared
to the No-Foresight specification, Complete- and Partial-Foresight both have
additional parameters, the future component of monetary policy shocks. In
order to explore this issue, the latter two measures are considered which
penalize over-fitted models with more free parameters.

In doing so, I set the maximum anticipation horizon to be 4 quarters, a lot
lower than the values employed in the literature on news about technology
shocks (Schmitt-Grohé and Uribe, 2012; Fujiwara et al., 2011). Compared to
technology shocks, however, any ability of private agents to anticipate future
monetary policy shocks should be small and limited to a few quarters ahead.
As illustrated above, this is particularly because the sample span used for
estimating the model largely overlaps with a period when the Federal Reserve’s
guidance on future monetary policy actions was opaque (Blinder et al., 2001;
Blinder et al., 2008).

Table 1 reports the negative of average log marginal densities for models
with various horizons of future monetary policy shocks, together with the two
alternative measures of model fit.>) By any criterion, there is a gain in terms of
model fit when incorporating the future components of monetary policy
4) Unlike this work, however, both Fujiwara et al. (2011) and Milani and Treadwell

(2012) only consider the average log marginal density in evaluating model fit.
5) Models with smaller measure should be preferred to models with larger one.
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shocks unanticipated by agents. The data prefers the model with
Partial-Foresight to the No-Foresight specification. In contrast, augmenting
anticipated monetary policy shocks cannot enhance the model’s ability to fit
the data better, which contrasts with the finding by Milani and Treadwell
(2012).9) The average log marginal data densities become larger under the
Complete-Foresight specification, relatively to No-Foresight. A similar finding
is observed for the DIC and BPIC measures, with an exception of the
combination of horizon £=0,2.

Regarding the best-fitting combination, the log marginal density criterion is
in favor of the model with the combination of horizon k= 0,1,2,3,4, whereas

the DIC and BPIC both prefer that with k=0,1,2,3. In order to be free from

the overfitting issue discussed above, I rely on the DIC and BPIC measures in
judging the best-fitting combination of future monetary policy shock horizons
under the Partial-Foresight specification. Accordingly, I set the horizons to 0,
1, 2, and 3 for the empirical results of the Partial-Foresight information
structure. In addition, I present the results of Complete-Foresight with the

same combination of horizons for comparison.

6) A prominent explanation for the discrepancy between the results herein and
that of Milani and Treadwell (2012) is the choice of the anticipation horizon.
Their best-fitting model is augmented with the anticipation horizons of 4, 8,
and 12 quarters, whereas the maximum anticipation horizon in this work is
restricted to 4 quarters.
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(Table 1) Log Marginal Data Densities, Deviance Information Criterion(DIC), and Bayesian
Predictive Information Criterion (BPIC) of the Models with Various Information Structures

Log Marginal Data Densities Complete Foresight Partial Foresight
k=0 (No Foresight) 170.96
kE=0,1 171.71 166.01
k=0,2 172.15 166.08
k=0,3 172.21 166.13
k=0,4 171.73 166.10
k=0,1,2 172.77 164.07
k=0,1,2,3 173.66 162.60
k=0,1,2,3,4 174.49 162.03*
DIC Complete Foresight Partial Foresight
k=0 (No Foresight) 239.95
k=0,1 240.11 237.21
k=0,2 239.53 237.07
k=0,3 242.29 236.88
k=0,4 241.57 238.12
k=0,1,2 242.40 236.95
k=0,1,2,3 243.99 235.88%
k=0,1,2,3,4 244.78 238.64
BPIC Complete Foresight Partial Foresight
k=0 (No Foresight) 245.54
k=0,1 244.62 243.77
k=0,2 244.15 243.62
k=0,3 248.65 243.28
k=0,4 247.60 245.53
k=0,1,2 247.84 243.95
k=0,1,2,3 249.69 242.07*
k=0,1,2,3,4 249.91 246.66

Notes: 1) The log margina ldata densities use Geweke's modified harmonic mean estimator.

2) An asterisk (*) denotes the best-fitting combination of horizons under each
goodness-of-fit measure.
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2. Posterior Estimates

The last three columns of Table 2 provide the mean, and 95th percentile
intervals from the posterior distributions.”? Overall, the data seems to be
informative in identifying the parameters of the models as the comparison of
the prior to posterior densities reveals. Throughout this section, I focus on
comparing the results of the models with No- and Partial-Foresight since the
estimates of the Complete-Foresight are almost identical to that of
No-Foresight as their 95th percentile intervals largely overlap.

The estimates of the risk aversion parameter become higher under
Partial-Foresight with the mean of 1.86, compared to the No-Foresight model.
On the contrary, the estimates of the inverse of the Frisch elasticity of labor
supply parameter, 77, are not sensitive to the information structures. For both
parameters, the posterior estimates are slightly larger than the values
estimated in Smets and Wouters (2007).

The model in this paper embeds with real rigidity given as the form of
internal consumption habit. It turns out that there are trade-offs between the
information structures and consumption habit formation. The parameter
estimates tend to be smaller under the Partial-Foresight specification than the
other information structures considered. Interestingly, this result is a
reminiscent of the finding proposed by Walker and Leeper (2011), who argue
that alternative information structures, such as news or noise, alter the
persistency of a model's equilibrium. As Del Negro et al. (2007) illustrate,
consumption habit is an important propagation mechanism that generates
model endogenous persistency consistent with the data. The gap between the
habit parameter estimates of the No- and Partial-Foresight specifications

suggests that the information flow assuming agents partial foresight on

7) Although not reported herein, the companion estimation appendix includes
details of the distribution of the posterior estimates.
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monetary policy shocks alters the spectral properties of the equilibrium.

(Table 2) Prior and Posterior Distributions of Each Estimated Parameter

Prior Posterior

e Mt et () For'\;(;i_ght CFOoTepslztst_ Fz&r];t;?;t
o G | 1.5(0.39) 1.59 1.64 1.86

(Risk Aversion) [0.86, 2.32] | [1.10, 2.21] | [1.13, 2.27]1 | [1.32, 2.50]
n G | 20(0.75 2.59 2.61 2.65

(Inverse Frisch (0.81, 3.72] | [1.34, 4.28] | [1.32, 437) | [1.35, 4.45]

asticity)

B, B | 0.5 (0.25) 0.38 0.39 0.31

(Cons. Habit) [0.10, 0.90] | [0.24, 0.56] | [0.25, 0.57] | [0.17, 0.44]
o N | 1.5(0.25 1.53 1.54 1.49

(MP Rule Inflation) [1.09, 1.91] | [1.20, 1.89] | [1.21, 1.90] | [1.17, 1.86]
b, G | 013 (.1 0.86 0.82 0.60

(MP E?éift%“p“‘ [0.01, 0.39] | [0.56, 1.21] | (0.53, 1.16] | [0.29, 0.93]
o, B | 0.5 (0.25 0.87 0.88 0.91

(MP Rule AR(1)) [0.10, 0.90] | [0.84, 0.90] | [0.85, 0.91] | [0.88, 0.93]
P, B | 0.5 (0.25 0.94 0.94 0.95

(Technology AR(1)) [0.10, 0.90] | [0.89, 0.98] | [0.89, 0.98] | [0.90, 0.98]
P B | 0.5 (0.25) 0.85 0.85 0.86

(Preference AR(1)) [0.10, 0.90] | [0.73, 0.92] | [0.74, 0.92] | [0.79, 0.92]
o’ IG | 0.1 (2.00) 0.15 0.14 0.05

(Current MP Std.) [0.02, 0.40] | [0.13, 0.17] | [0.12, 0.17] | [0.02, 0.10]
ol IG | 0.05 (1.00) 0.02 0.08

(1-qrt ahead MP Std.) [0.01, 0.21] [0.01, 0.04] | [0.01, 0.15]
o’ IG | 0.05 (1.00) 0.02 0.07

(2-qrt ahead MP Std.) [0.01, 0.21] [0.01, 0.04] | [0.01, 0.15]

Note: This table reports the mean and associated [2.5%, 97.5%] percentile intervals(in

brackets).
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(Table 2) Prior and Posterior Distributions of Each Estimated Parameter
(continued)

Prior Posterior
e Dist. | Mean (Std) For'\:;i_ght CFOoTeF?left_ Fz&r];t;?;t
o IG | 0.05 (1.00) 0.02 0.08
(3-qrt ahead MP Std.) [0.01, 0.21] [0.01, 0.04] | [0.01, 0.15]
o, IG | 0.38 (0.18) 3.91 3.89 3.59
(Technology Std.) [0.20, 0.83] | [2.30, 6.93] | [2.26, 6.95] | [2.16, 6.33]
o, IG | 0.38 (0.18) 2.00 2.08 1.38
(Preference Std.) [0.20, 0.83] | [1.38, 2.95] | [1.43, 3.04] | [0.92, 2.07]
w B 0.5 (0.25) 0.93 0.93 0.93
(Calvo Param.) [0.10, 0.90] | [0.89, 0.96] | [0.89, 0.96] | [0.89, 0.96]
T G | 062 (0.1 0.87 0.87 0.86
(SS Inflation) [0.44, 0.83] | [0.63, 1.14] | [0.63, 1.14] | [0.62, 1.11]
r G | 02501 0.81 0.81 0.74
(SS Real Interest Rate) [0.09, 0.48] | [0.51, 1.09] | [0.53, 1.09] | [0.45, 1.02]
Note: This table reports the mean and associated [2.5%, 97.5%] percentile intervals(in

brackets).

The posterior estimates for the Calvo parameter are much larger than the
range typically reported in existing literature. The mean values are around
0.93 for all specifications, and these values are substantially higher than the
estimates in Smets and Wouters (2007), which have a mean of 0.66. The
estimates of the Calvo parameters are, however, relatively close to the value of
0.90 which Milani and Treadwell (2012) obtain using a similar sample period.

Turning to the parameters appeared in the monetary policy rule, the
inflation responsiveness parameter, ¢,., remains unaltered by various
information structures. In contrast, its responsiveness to output growth, ¢, ,
are quite sensitive across the

and the autoregressive parameter, p,,

information flows. The parameter on the reaction of the Taylor rule to output
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growth is estimated to be lower under Partial-Foresight with the range of 0.29
to 0.93, whereas its 95th percentile interval is from 0.56 to 1.21 under
No-Foresight. Regarding the interest rate smoothing parameter, the
Partial-Foresight specification makes the monetary policy rule more persistent
as its posterior mean increases from 0.87 to 0.91.

The estimated autoregressive parameters of the exogenous shocks tend to
be slightly higher when the model is associated with the Partial-Foresight
structure. Although the mean estimates are similar across the information
structures, this tendency is particularly pronounced for the preference shock
AR(1) parameter, p,. Under Partial-Foresight, its 95% interval becomes a lot
tighter with a significantly higher estimate for the lower 2.5th percentile. As
will be discussed formally below, the relatively higher estimates of the shock
AR(1) and interest rate smoothing parameters under Partial-Foresight play a
crucial in explaining the model endogenous persistence produced by the
information structure.

Regarding the shock standard deviation parameters, the Partial-Foresight
specification alters the relative magnitude of the two demand shocks—
preference and monetary policy shocks. In order to illustrate this aspect, I
compare the estimates under Partial-Foresight to their complete information
counterpart. The Complete-Foresight model's mean standard deviation
estimates of the current monetary policy shock are as much as seven times
that of the future shocks. This finding illustrates that the unanticipated
component is the most important in characterizing the monetary policy
behavior under the assumption of agents perfect foresight. This pattern is in
contrast to the results in Milani and Treadwell (2012), which state that the
anticipated component of monetary policy shocks is given more weight than

the unanticipated component.
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In contrast, the posterior distributions of the monetary policy standard
deviation parameters for Partial-Foresight display a substantially different
pattern. In terms of the mean and 95th percentile intervals, the standard
deviation is lowest for the current shock. This finding implies that the data
puts more weight on the future monetary policy shocks than the current one,
when agents fully characterize the underlying structure of monetary shock
processes but have no foresight about them. As the future components of
monetary policy shocks become more volatile, the standard deviation of a
preference shock declines substantially under Partial-Foresight. In terms of the
mean estimates, the standard deviations of a preference shock are 1.38 and
2.00 under the Partial- and No-Foresight, respectively. This finding indicates
that there is a trade-off between the two demand shocks, influenced by the
relative magnitude of the current and future monetary policy shocks.

Finally, the steady state real interest rate, 7, is estimated to be lower under

Partial-Foresight. Its 95th percentile interval is from 0.45 to 1.02, which

implies the discount factor, calculated by =1/ <1+7"/ 100), ranges from
0.9899 to 0.9955. The estimates under No-Foresight have the 95th percentile

interval of [0.53,1.09] that corresponds to the interval for the discount factor

from 0.9892 to 0.9947. It turns out that the steady state inflation, 7, is not

affected by the information flows as its 95th percentile intervals remain

invariant across the models.

V. The Role of Information Flows

This section draws on empirical implications of the information structures.

In particular, I demonstrate how the information flows affect a model's
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equilibrium dynamics by focusing on the following quantitative results—the

impulse response functions and properties of model-implied data.

1. Impulse Response Functions

Figure 1 displays the estimated mean impulse responses of some key
variables to technology and preference shocks across the various information
flows. The overall features of the impulse responses to a technology shock are
almost unaltered by the information structures. Output surges, and nominal
interest rate as well as inflation rate fall in response to a positive technology
shock. This pattern in the responses are consistent with those obtained in the

existing DSGE literature (e.g., Smets and Wouters (2007)).

(Figure 1> Mean Impulse Responses to Technology(Top Panel) and Preference(Bottom
Panel) Shocks Across the Models with Various Information Structures
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Notes: 1) In each figure, impulse responses for No-Foresight(solid lines), Complete- Foresight(solid
lines with circles), and Partial-Foresight(dashed lines) specifications are reported.
2) The x-axis measures quarters.
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(Figure 2) Mean Impulse Responses to Monetary Policy Shocks of Various
Horizons (q) across the Models with Various Information Structures
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Note: The x-axis measures quarters.

Similarly, the effects of a preference shock are invariant across the information
specifications. A minor difference emerges from the Partial-Foresight
specification, in that the magnitude of impulse responses is consistently smaller
than the other structures. This finding attributes to the decline in the preference
shock standard deviation under Partial-Foresight.

Figure 2 reports the estimated mean impulse responses of output, inflation,
and interest rate to monetary policy shocks with various horizons. The effects

of current monetary policy shocks display quite similar patterns across the
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three specifications, with mild level-differences under Partial-Foresight
originated from the smaller shock volatility estimates. Regarding the
consequences of future monetary policy shocks, however, the results vary
substantially across the information structures. If the shock is perfectly
observable, inflation plummets when agents receive news about future
monetary policy shocks and then, given the the AR(1) structure on the shock,
it would gradually rise over time. The same pattern is observed in the output
impulse responses. Consequently, nominal interest rate responds negatively to
a future monetary policy tightening throughout the anticipation horizon with
a sharp increase in the period immediately before the interest rate hike. Note
that the response pattern of nominal interest rate in response to anticipated
monetary policy shocks is due to the expectational effects of foresight. Driven
by the intertemporal consumption smoothing motive, contractionary monetary
policy shocks in the future produce declines in current consumption which is,
in turn, mapped into lower inflation in the current period. The nominal
interest rate, governed by the monetary policy rule as in (11), responds
negatively to a future monetary policy shock throughout the anticipation
horizon.

If the future shock components are unobservable, by contrast, agents
recognize no changes in those variables until a monetary policy shock is
realized. This makes the impulse responses stay at zero for the time being. The
agents react to the changes in interest rate only when they perceive a
monetary policy shock, which precludes fluctuations in the impulse responses
caused by the expectational effects of foresight. Future monetary policy
shocks result in similar response patterns to a current policy disturbance once

the shock is materialized.
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2. Information Flows and The Effects of Monetary Policy Shocks

In order to explore how the alternative information structure affects interest
rate dynamics, the left panels of Figure 3 display the demeaned filtered and
actual series of annualized nominal interest rate. The filtered series are
obtained by feeding the model only the estimated monetary policy shocks in
which the difference in information structure occurs. To facilitate
comparison, [ repeat this exercise for the two information structures—
No-Foresight and Partial-Foresight. A common feature of these two panels is
that monetary policy shocks mainly account for the short-run fluctuations in
the interest rate, which can be attributed to the i.i.d. nature of the monetary
policy disturbances.

Nevertheless, embedding unobservable future components of monetary
policy shocks has an important implication for the equilibrium interest rate
dynamics. The right panels of Figure 3 show the spectrums of the filtered and
actual series. I additionally report the spectrums of the filtered series obtained
by feeding the model only the non-monetary policy shocks. Compared to the
No-Foresight specification, introducing the additional i.i.d. shocks in
monetary policy rules makes the equilibrium interest-rate process less
persistent, with higher frequencies—those further away from the origin in the
figure—are given relatively more importance. Meanwhile, the equilibrium
dynamics induced by non-monetary shocks becomes relatively more persistent
than that of the No-Foresight specification. This finding is consistent with
Granger (1966) who argues that the “typical spectral shape” of macroeconomic
time series allocates most of the spectral power to low frequencies. The
Partial-Foresight information structure pushes spectral power of the interest

rate into higher frequencies, which the estimation is in need of propagation
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mechanisms to correct this pattern. In this regard, the higher estimates for the
shock AR(1) parameters reported in Section 4.2 may play a key role in
generating a more persistent equilibrium dynamics of the interest rate via the
non-monetary policy shocks.

Given that how monetary policy shocks are modeled is crucial for the higher
frequency components of the interest-rate fluctuations, a natural concern is
whether the Partial-Foresight specification is more consistent with the data. In
order to illustrate this issue, Table 3 reports two statistics regarding the
relationship between the nominal interest rate data and model-implied series

generated only by the estimated monetary policy shocks—correlation

(Figure 3) [Left panels] Actual Nominal Interest Rate Data(Solid Lines) and the
Mean of Model-implied Series Simulated by Feeding Only the Estimated
Monetary Policy Shocks(Solid Lines with Circles). [Right panels] Spectrums of
Actual Nominal Interest Rate Data(Solid Lines), and the Mean Spectrums of
Model-implied Series Simulated by Feeding Only the Estimated Monetary Policy
Shocks(Solid Lines with Circles) and Non—monetary Policy Shocks(Dashed Lines).
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Notes: 1) Shaded areas in the left panels indicate NBER recession dates.
2) In the right panels, the x-axis measures frequencies between 0 and 2 out of
the entire domain [0,27].
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(Table 3) Correlation Coefficients and 2> between the Actual Nominal Interest Rate Data
and Model-implied Series Simulated by Feeding Only the Estimated Monetary Policy Shocks

No Foresight Partial Foresight
Correlation Coefficient 0.62 0.67
[0.51, 0.71] [0.54, 0.80]
R* 0.38 0.46
[0.26, 0.51] [0.29, 0.64]

Note: This table reports the mean and associated [2.5%, 97.5%] percentile interval(in
brackets) estimates.

coefficients and R” from the regression of the data on the model-implied

series. It turns out that both measures rise when the Partial-Foresight
specification is considered. This result suggests that incorporating future
components of monetary policy disturbances unobservable to agents can
improve the model's performance by producing more data-consistent higher

frequency variations bared in interest rate dynamics.

3. Spectrums of Information Flows

Having delineated the effects of individual shocks, I now examine the
aggregate effects of the whole model shocks on the equilibrium dynamics. This
section explores the model's ability to generate the persistence observed in
the actual time series. To this end, I compare the spectrums of model-implied
output, inflation, and interest rate to that of the actual data. The
model-implied series are obtained by feeding sequences of all the model
shocks into the model's equilibrium system.

Figure 4 makes a comparison between the spectrums of the actual time
series and the mean estimates of model-implied spectrums under the No- and

Partial-Foresight information structures. The Partial-Foresight specification,
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{Figure 4) Actual Data Spectrums(Solid Lines), and the Mean Spectrums of Model-implied
Series under No—Foresight(Dashed Lines) and Partial-Foresight(Salid Lines with Circles)
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Note: The x-axis measures frequencies between 0 and 1 out of the entire domain [0, 2x].

as it turns out, tilts the spectrum of all variables so that lower frequencies are
given relatively more weight. This tendency is more pronounced for output
and nominal interest rate than inflation. Based on the posterior estimates in
Section 4.2, it is worthwhile to mention that Partial-Foresight induces a more
persistent equilibrium even though it relies less on the persistence generated
by internal propagation mechanisms, such as habit formation in consumption.
A part of the factors explaining this, as illustrated in the previous section, may
be the higher estimates for the shock AR(1) parameters, which make the
propagation mechanism of exogenous shocks more persistent. Given the
enhanced data fit by the Partial-Foresight specification, this finding also
reconfirms the argument in Collard et al. (2009), in that the model’s capability
of generating inertia in endogenous variables can play a crucial role in

determining the data fit for small-scale new Keynesian DSGE models.
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VI. Counterfactual Analysis

1. Observability of Future Monetary Policy Shocks and Business
Cycles

The equilibrium dynamics induced by unobservable future monetary policy
shocks can have quite distinct business-cycle implications from the case in
which those shocks are perfectly anticipated by private agents. In order to
explore this issue, I conduct a counterfactual experiment on agents'
information flows for future monetary policy shocks. Using the best-fitting
model (Partial-Foresight) as a benchmark, the counterfactual scenario
considered in this section asks how the business cycle fluctuations would have
been altered if the future components of monetary policy shocks were in
agents' information sets. To make the results consistent with this scenario, the
counterfactual exercise is constructed by re-solving the Partial-Foresight
model, but assuming that agents have perfect foresight about future changes
in monetary policy shocks.

The first three panels of Figure 5 report the actual and counterfactual series
for output, inflation, and interest rate. It is clear that these variables would
have been less volatile if agents had been able to perfectly foresight future
changes in monetary policy shocks. To highlight this aspect, Table 4 compares
the volatilities of the actual and counterfactual series. One finding is that the
reduction in volatility is most pronounced in the interest rate series, which can
be attributed to the spectral property of the Partial-Foresight equilibrium
illustrated in the previous section. Embedding unobservable future
components of monetary policy shocks tilts the spectrum so that higher

frequencies are given relatively more weight. And this effect is particularly
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(Figure 5) The First Three Panels Report the Mean Estimates of Actual(Solid
Lines) and Counterfactual(Dashed Lines) Series. The Last Two Panels Report
the Mean and Associated [2.5%, 97.5%] Percentile Intervals of the Gap
between the Actual and Counterfactual Output and Inflation Rate Series
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H3IS0T H31H 15

(Table 4) Standard Deviations of Actual and Counterfactual Series

Actual Counterfactual

Output 3.16 2.88
[2.91, 3.72] [2.00, 4.04]

Inflation Rate 1.78 1.71
[1.74, 1.87] [1.42, 2.06]

Nominal Interest Rate 1.84 1.24
[1.80, 1.93] [0.94, 1.65]

Notes: 1) This table reports the mean and associated [2.5%, 97.5%] percentile intervals (in
brackets).
2) The counterfactual series are obtained under the assumption that future monetary
policy shocks are perfectly anticipated by agents.

emphasized in the nominal interest rate dynamics. Hence, switching from
the Partial- to Complete-Foresight assumption induces a more persistent
equilibrium, which, in turn, suppresses high frequency fluctuations in interest
rate.

The nature of the counterfactual experiment characterizes the source of the
significantly diminished volatility of nominal interest rate. As Dovern et al.
(2012) illustrate, volatility of the policy interest rate is often used as a proxy
indicator for monetary policy uncertainty. In this regard, the relatively lower
volatility of nominal interest rate indicates a reduction in policy uncertainty
under the counterfactual scenario. Recall that in the model agents are aware
of the presence of future components of monetary policy shocks. The only
difference across the actual and counterfactual interest rate series is agents'
capability of anticipating discretionary policy actions which will be realized in
the future, so the reduced interest-rate volatility under the complete-foresight
assumption can be ascribed to the resolution of future policy uncertainty.

The last two panels of Figure 5 detail the effects of the counterfactual

scenario on output and inflation by showing the mean and associated 95%
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error bands for the differences between their actual and counterfactual series.
Overall, two notable features are commonly observed for both variables. First,
the counterfactual gaps are strongly cyclical. The gap series expand over the
boom phases and collapse during the economic downturns. This tendency
implies that output and inflation increase (fall) less during expansions
(recessions) under the counterfactual scenario, which reconfirms the
aforementioned finding that the fluctuations in the key macroeconomic
variables would have been milder if agents had possessed perfect foresight
about future monetary policy shocks.

Second, there is evidence of a structural change in the width of the error
bands, occurring in the late 1980s. Compared to the earlier sample period, the
error bands become tighter since the 1990s. This finding suggests that agents'
information structure about future monetary policy shocks matters more for
the macroeconomic performance of the earlier sample period. One prominent
explanation regarding the source of this phenomenon might be the change in
the Federal Reserve's communication strategy. Blinder et al. (2001)
demonstrate that the Fed has changed its communication strategy dramatically
toward greater transparency since the early 1990s. As they argue, a more
transparent communication stance contains the Fed's clearer guidance about
the future path of interest rates. In a similar vein, Goodfriend (2010) find that,
ever since the mid-1990s, the Fed has begun to communicate with financial
markets more actively in terms of interest rate policy. The results emerged
from the counterfactual exercise are consistent with the findings in the
literature, in that assuming agents' perfect foresight about future monetary
policy shocks alters the pre-break trajectory of the variables more profoundly.
Also, the break point identified by the counterfactual analysis accords well

with the historical evidence that these previous studies document.8)
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2. Observability of Future Monetary Policy Shocks and Disagreement

This subsection seeks economic insights of the counterfactual gap series of
output and inflation. To this end, I compare them to the corresponding
disagreement series in the Survey of Professional Forecasters (SPF) collected by
the Federal Reserve Bank of Philadelphia. The choice of the disagreement data
for comparison is guided by Dovern et al. (2012), who argue that a crucial
factor affecting variations in the cross-sectional dispersion of forecasts is
uncertainty about monetary policy.

The first two panels of Figure 6 present the SPF disagreement series for real
GDP and inflation rate, together with the corresponding counterfactual gap
series.9) At first glance, the two series exhibit substantially different degree of
persistence. Compared to the model-implied series, high frequency
variationsarerelativelymoreemphasizedin the SPF disagreement data. Focusing
on the low-frequency movements of output, however, both series seem to

display similar trends, which peak in the 1970s and decline afterward. To

8) There is an alternative framework which might be useful to interpret this
finding—the state-dependent information rigidity framework as in Coibion and
Gorodnichenko (2010). Theyarguethatthedegreeofagents information rigidity is
negatively related to the size of fundamental shocks perturbing the economy.
Given that the post-break period largely overlaps with the Great Moderation,
this framework could be useful in understanding the time-varying behavior of
the error bands. The logic of the mechanism, however, reaches exactly the
opposite of the empirical finding presented—the counterfactual gaps should be
wider during the Great Moderation period. This is because the mechanism
predicts a higher degree of information rigidity in the latter part of the sample
period, which implies that the perfect foresight assumption should change the
time paths of the variables more dramatically. The empirical results suggest
that the mechanism discerned by the state-dependent information rigidity
framework is not a crucial driving force of the counterfactual exercise
performed herein.

9) In doing so, I take the absolute value of the counterfactual gap series to make
them compatible to the construction of the SPF disagreement series,
cross-sectional dispersions in GDP and inflation forecasts.
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detail this aspect, the last two panels of Figure 6 make explicit comparisons
between the model-implied series and low-frequency variations of the SPF
disagreement data, approximated by four-quarter moving averages. A notable
feature is that the model-implied output series tracks the low-frequency
movements in the SPF disagreement series quite closely, with an exceptional
period in the early 1980s. Nevertheless, this tendency is rather weaker for the
inflation series.

Table 5 explores how the SPF disagreement series correlates with the

model-implied counterfactual gap series by running a regression:
disagreement, = (3, + B,lcounterfact. gap,| + u, (16)

where |counterfact. gap,| denotes the mean estimates of the absolute value

of the counterfactual gap series emerged from the model. For comparison, I

additionally consider an alternative regression:
disagreement, = (3, + B AFFR +u, 17)

where AFFR? denotes squared change in the federal funds rate, used as a

proxy index for policy uncertainty in Dovern et al. (2012).
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(Figure 6) The First Two Panels Report Disagreement about Real GDP and
Inflation in the Survey of Professional Forecasters(SPF) Dataset(Solid Lines with
Circles) and the Mean Estimates of the Absolute Value of Counterfactual Gap
Implied by the Model with Partial-Foresight(Solid Lines). The Last Two Panels

Report the Moving Average of the SPF Disagreement Series(Thin Solid Lines with
the Right Y-axis) and Mean Estimates of the Absolute Value of Counterfactual Gap
Implied by the Model with Partial-Foresight(Thick Solid Lines with the Left Y-axis)

Counterfactual Gap and SPF Disagreement Data: Output

5 T T T I I I
a4k —=— SPF Disagreement Measure
5 Counterfactual Gap
2
1
O L L L | | |
1970 1975 1980 1985 1990 1995 2000 2005
Counterfactual Gap and SPF Disagreement Data: Inflation Rate
T T T T T T
2 -
1
1 1 . 1 1 1
1970 1975 1980 1985 1990 1995 2000 2005
Output Inflation Rate
2 H 1 2
4
3
1 2 0.5 1
1
0 0 0
1970 1980 1990 2000 1980 1990 2000

Notes: 1) The counterfactual series are obtained under the assumption that future
monetary policy shocks are perfectly anticipated by agents.
2) Shaded areas indicate NBER recession dates.
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(Table 5) Regression Coefficients, GMM Corrected Standard Errors(in
parenthesis, lag=4), and R* for Output and Inflation Rate

Bo By R?

disagreement, = (3, + B, lcounterfact. gap,| +u,

Output 0.47 1.22 0.28
(0.27) (0.29)

Inflation Rate 0.76 0.66 0.06
(0.12) (0.30)

disagreement, = 3, +51AFFHf+ U,

Output 1.44 0.21 0.02
0.16) 0.16)

Inflation Rate 0.98 0.18 0.05
(0.08) (0.07)

Note: “disagreement t * denotes the SPF disagreement measures for output and inflation
rate, while “counterfactgap, * and “AFFR?" denote the absolute value of the mean

estimates of the counterfactual gap in output and inflation implied by the model with
Partial-Foresight, and squared change in the federal funds rate, respectively.

The regression results for (16) show that the slope coefficients both for
output and inflation are positive and significantly different from zero.
Compared to the regression results for (17), employing the model-implied
series substantially increases the explanatory power of the output regression,
whereas its gain is likely to be limited for inflation rate. These findings suggest
that the model-implied uncertainty about future monetary policy shocks can
be a significant source of fluctuations in disagreement about output and
inflation rate as they are positively related to one another. Meanwhile, the

effect is particularly pronounced for output.
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V. Robustness

In order to examine the robustness of the main results and rankings
presented above, this section illustrates the implications of considering

alternative procedures for the empirical analyses.

1. Estimation of the Price Indexation Parameter

The baseline specifications restrict the price indexation parameter A to be
zero. Because of this restriction, one might wonder how the results change if
the parameter is estimated from the data. In order to address this issue, I
re-estimate extended baseline models with a different assumption. Now the
indexation parameter can take any value between zero and one to maximize
posterior likelihood. The prior for this parameter is chosen to be the same as
the Calvo parameter, a beta distribution with a mean of 0.5 and a standard
deviation of 0.25, which is fairly diffused and covers a reasonably large range
of the parameter space.

Table 6 provides the mean and 95th percentiles of the posterior distribution
for the price indexation parameters across various information structures. The
estimated price indexation parameters are considerably low for all the
information specifications (the means of 0.05 or below for all the
specifications). All these estimates are relatively lower than the estimated mode
of 0.21 reported in Smets and Wouters (2007) using the post-1983 sample. The
estimates of this work, however, are relatively close to the valueof 0.08
obtained by Levin et al. (2006). Meanwhile, the other estimates remain quite

similar to the baseline model parameters which are summarized in Table 2.
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(Table 6) The Prior and Posterior Distributions of the Price Indexation
Parameter from the Models with Flexible Price Indexation(i.e., )\E[O,l])

Prior Posterior

Parameter . . Complete Partial
Dist. | Mean (Std) |No Foresight Foresight Foresight

A B 0.5 (0.25) 0.04 0.05 0.05
(Price Index) [0.10, 0.90] | [0.00, 0.13] | [0.00, 0.13] | [0.00, 0.14]

Note: This table reports the mean and associated [2.5%,97.5%] percentile intervals
(inbrackets).

(Table 7) Average Log Marginal Densities for the Baseline Models with No

Price Indexation (i.e., A=10), Models in which the Price Indexation Parameter
is Estimated (i.e., A=1[0,1]), Models with Perfect Price Indexation (i.e., A=1),
and Models for the Post-1983 Sample

No Foresight Egggs;ﬁ Partial Foresight
Baseline 170.96 173.66 162.60
Estimated price indexation 175.46 177.46 166.75
Perfect price indexation 205.11 206.64 193.23
Post-1983 sample 42.80 45.92 34.00

The second row of Table 7 presents the average log-marginal data densities
for these alternative specifications. There is no change made in the ordering
of model fit, compared to the baseline specification with no backward price
indexation. Still, Partial-Foresight is the most preferred specification by the

data.

2. Estimation with Perfect Indexation to Past Inflation

Many empirical DSGE researches advocate that price indexation to past
inflation is a key model feature that improves a model’s fit by capturing the

sluggish response of inflation to exogenous shocks. Accordingly, Collard et al.
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(2009) set the parameter to be one, followed by Christiano et al. (2005). To
access the sensitivity in this dimension, I again re-estimate the baseline
models under perfect price indexation, parameterized by A=1.

The third row of Table 7 reports the average log-marginal densities for the
alternative models assuming perfect backward price indexation. Inspection of
the table shows a decrease in the posterior log-likelihood for all models,
compared to each model's no-price-indexation counterpart. This finding
indicates that the complete indexation hampers data fit. Nonetheless, the

ranking of the alternative models remains unchanged.

3. Estimation with Post-1983 Sample

Economists generally agree that there is a structural break in monetary
policy, occurred in the mid-1980's (e.g., Clarida et al., 2000; Cogley and
Sargent, 2005). Accordingly, I re-estimate the models using the post-1983
sample to examine if the main results of this paper are preserved when a more
recent set of data is used for the estimation. The last row of Table 7 displays
the average log-marginal densities for each information specification for the
post-1983 sample. The rankings of model fit are not affected by the selection
of this data period. The Partial-Foresight model performs better than the
complete information models. The margins in model fit are quite similar to the

baseline specifications that use data from 1967.

4. Estimation with Diffuse Priors

To show the sensitivity of the main empirical results to the priors, I
re-estimate the baseline models under more uninformative, flatter priors. The

priors mainly follow Collard et al. (2009) and are summarized in Table 8. Table
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9 reports the average log-marginal data densities for the baseline models when
the diffuse priors are employed.

Diffuse priors raise the posterior log-likelihood for all information
specifications, but this does not alter the ranking of the alternative models’ fi
t.10) This finding suggests that the main results of this paper are not driven by

a specific choice of the prior distributions.

Vll. Conclusion

In this paper, I formulate and estimate a small-scale new Keynesian DSGE
model to examine the effects of alternative information flows in monetary
policy. In particular, I focus on the empirical implications of embedding
future components of monetary policy shocks unanticipated by private agents.
I find that the information structure which assumes agents inability to
foresight future monetary policy shocks, in general, enhances the models’ fit
relative to that which is obtained from models under the “conventional”
complete information assumption. The information structure induces a more
persistent equilibrium of the NK-DSGE model with less reliance on internal
propagation mechanisms, such as habit formation in consumption. In
addition, it generates high frequency variations in interest-rate dynamics

consistent with the data more than the other information specifications.

10) There are two parameters weakly identified, the steady-state inflation 7 and

real interest rate r, for all the information specifications. The parameter
estimates under the diffuse priors are provided in the estimation appendix.
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(Table 8) Diffuse Prior Distributions

Parameter : Prior
Dist. Mean (Std) 95% Interval
0 (Risk Aversion) G 1.5 (0.75) [0.41, 3.29]
7 (Inverse Frisch Elasticity) G 2.0 (1.5) [0.20, 5.83]
9 (Cons. Habit) U [0, 11 [0.025, 0.975]
¢, (MP Rule Inflation) N 1.5 (0.5 [0.52, 2.47]
¢, (MP Rule Output Growth) G 0.13 (0.2) [0.00, 0.71]
p, (MP Rule AR(1)) U [0, 1] [0.025, 0.975]
p. (Technology AR(1)) U [0, 1] [0.025, 0.975]
P, (Preference AR(1)) 9] [0, 1 [0.025, 0.975]
0" (Current MP Std.) 1G 0.1 (2.00) [0.02, 0.40]
o (1-qrt ahead MP Std.) IG 0.05 (1.00) [0.01, 0.21]
07 (2-qrt ahead MP Std.) 1G 0.05 (1.00) [0.01, 0.21]
0 (3-qrt ahead MP Std.) 1G 0.05 (1.00) [0.01, 0.21]
0, (Technology Std.) IG 0.37 (0.18) [0.20, 0.83]
0, (Preference Std.) IG 0.37 (0.18) [0.20, 0.83]
w (Calvo Param.) U [0, 1] [0.025, 0.975]
7 (SS Inflation) U [0, 4] [0.10, 3.90]
7 (SS Real Interest Rate) U (0, 4] [0.10, 3.90]

(Table 9) Average Log Marginal Densities for the Baseline Models and Models
with Diffuse Prior Distributions

. Complete . .
No Foresight Forss ol Partial Foresight
Baseline 170.96 173.66 162.60
Diffuse Prior 156.87 160.05 151.79
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Compared to the case in which agents cannot anticipate future monetary
policy shocks, assuming their perfect foresight about the shocks could reduce
the volatilities of key macroeconomic variables. Also, I show that uncertainty
about future monetary policy can be a significant source of disagreement
about output. These findings can be potentially linked to the literature
emphasizing the role of the Fed's communication strategy in enhancing the
effectiveness of monetary policy (Woodford, 2005; Blinder et al., 2008).

In sum, all these findings have implications that extend beyond the
exercises performed here. More complicated models that are used to draw
policy conclusions also employ frictions of various kinds—real, nominal,
financial—to improvemodel fit. The main findings in this paper suggest that

information structures on monetary policy shocks deserve careful scrutiny.
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Appendix 1
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Abstract

This paper investigates the choices of R&D risk in a product differentiated
duopoly market where the corporate social responsibility (CSR) is involved in
the analysis. We compare the equilibrium choices between quantity and price
competitions and find the following findings. Under quantity competition, CSR
firm's R&D risk level is higher than that of private firm, and the difference of
R&D risk levels increases as the degree of product substitution or CSR level
increases. Under price competition, the R&D risk level of CSR firm is higher
than that of private firm with a lower substitutability, but the reverse is true
with a higher substitutability. Comparing each firm's R&D risk level under
quantity and price competitions, the level of R&D risk under price competition
is always higher than that under quantity competition and, as either product
substitutability or CSR level increases, the difference of R&D risks is higher
under price competition. We also extend the analysis into the case that the CSR
firm chooses the degree of CSR strategically to increase its profit. We then
show that if the degree of product substitutability is larger (smaller), the impact

on CSR under quantity (price) competition is larger.

% Key words: Duopoly Market, R&D Risk Choices, Product Substitutability,

Corporate Social Responsibility, Market Competition
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= . - = ~k T—k °
SREgto 24 T— R—k+17]9] dlZ4} Jeel {euﬂ}t:}g@r {ehi) g

2= 9l

t=

ot

w22 9 A4

2 9] q&71d A8 A4 AR i sl S8E SRS Blaret
S =M ARgE 5 At AFTHESIONA vlHlelE 42 4= 09 A2 55 T
E 12 AIRRES o83 AR(1) 23S ARESte] 3785 Ao, ek & pE ARERL |
grdE A7 Y S-Esitt ti7Mdstold 85 diEeabt AR Hstol 37
g d&AtE T folskA B A& Zoltt. olE 1FdslA Blistr| fIshA Theil's U-Hl&
< ATE 5= 9=, o] Bl &2 tE7M A& 24k2] RMSE(Root-mean-squared error:
YHAGE LADE ATV &A1) RMSER Wi gholch. wiek qied71d &t
o Aok U < 1Y Aot

2 AFoA= o AE5AE AR E eS| Hlwst] 918 McCracken (2007)
o] Atet MSE-F HZAA]2} Clark and McCracken (2001)°] A|QFst ENC-NEW A7
R & AF=SI} McCracken (2007)E Diebold and Mariano (1995)2F West (1996)7}
&2 AAS Sl &4 Ael(Loss differential)oll 719k51e] ARt HAHAIE 73t A
olet. vl F414018 dEeAe] SIS d) = (cg,1)* — ()1, TT
S, AF7HE S 7S ofl&A1e] BatAl A ks 27 vt E.

T—k
MSE, = (T— R—k+1)"" Y (e, ) i=0,1 ©)
t=R

ol W, d= MSE,— MSE, & %4338 MSE-F HAA= thaat gt

MSE— F= (T— R—k+1) X d/ MSE, 3)

MSE-F A%XE 98 F/olEk=1) A28 A% 2e WEZY(Nested
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model)?] AEAIE vl W FHSHPivotal)S 2HA HARE H2ke 2-&(Brownian
motion)< °]&3t EE&E(Stochastic integral)®] T2 o]FojA H|EE IFHLE
(Non-standard limiting distribution)& zZ¥=tt2) E3] 2 e} o] A7|eolE
(k> 1) d&8& AAsk= 3<% Clark and McCracken (2002)= MSE-F AZA7} &
A& 24 h=(Non-pivotal) HIH#E SRHEES 217 Hrhs HS Hloh oA,
EAE O] 79kt YARNE AMSSHES AlRISHL Qlom & Atoli= T
FEAES] HXE 33l MSE-F A%A°) thet SA14 F2-2 olEo] Wk
ENC-NEW AgA+&= 2284 of|&(Forecast encompassing) /1@< 7[Hlo 2 dl&&
= B7F] sl A=A A7 M 7 st AISAIE o 2ost] 2
LA EAE L & o, diSHSE TR iE7H olEA7E 187 HEE A
SHA] =t HiF7ME AiSAI] ditt 224 qEA|9] 7A17E 09l 77k Ao,
w2bA], Clark and MacCracken (2001) &3 22 HEA|E AQtsHTh

ENC— NEW=(T—R—k+1)X ¢/ MSE, 4)

T—k

_ _ ~k ~k ~k ~k ~k
q71A = (T_R_k+1> ! %Cwlol—'—l Ci41— 6o.t+1<€0,t+1 - 61.t+1)°]q'-
t=

o] ENC-NEW #7719] SRS MSE-F 24%)9] Fohamet SARE 4248 gk
1A T, VIR T 2 slos] eIl A BATE 24 9

o}, wEbA, ENC-NEW 789 AIX] 3t REAER] HA5 55f Hojdl gk Arg
gt} Clark and MacCracken (2001, 2002)°] w2 MSE-F A4 X2} ENC-NEW &
A= FATUE ASAE Hlashs B9t 2ol 2R S5 A48T 1 o]Ho
Al AAAEN Bls ol RGA LS HastehaA o A=t A4S 2= A
o= et

=Nl
R

oY

2) FA50E 2N MluT ) ARAMsle] myn fhysbste] Byl SYE g B
o] ohet §=0olehs AOkAIS Ragtoms FF7Hdol sl HEe] txmeel
e,
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3. HEAEM HMXK{Bootstrap procedure)

2 Ao E F2 Ul AE57Is4T Ei2 9 olE7sd A Ao FEAERS &
HEFES 59l YAXL p-values ARESIAL BAIY FE2 AR FEAEHY
AZR= Nelson and Kim (1995)3 Killian (1997)3 f-ARH diE#47} &3S 2h
A ZRths AFTHstolA gl AR(p) T2F Folohke thae] A=384d
(Data-generating process)= &9l A&7} TFEo|Ftkal 7Hg3it.3)

o
2

Tyt ar o ey 5)

T, =atpr,_totpr e, )

o714 AR W] € = (e ,65,,) = TRALHERL £ 2T SgHoln] 22 2
S BEKiLd). FEAERL WA 394 (5)2 (6) OLSZ F7gskaL #i
we {c)] | & el AoRM AZECY REAEYS S AR

(Pseudo-disturbance)2 AAsH] 8] OLS HE X} {¢ t}T: o 2=
7+ 100719] ZAE F2H9] B-YU5Z(Random drawing with replacement)sto] Ak

g ae {e] e g 531, AEAEe] S48 TS BE S
RAGWE €, = (€1, 6,,) 8 ol SETT 0¥A 220 WAF 3AAN 6)
o @9 Es FEAEL olgslel FAsolgm ojZudie] fAbRR

{A* A*}TJr 100

Ty }\g/%]:d ueq ‘/l\" 9»1 s O] UH, 5—7]—'?—%?_ 7"1‘7’]' (1'171'27...7$p)‘§‘ 0= /g_

it

t=1
ok Al AE SAHEE Z1ed 3 A 100749 $9A1E AATORA 2718 A
o] JaFe Haskik. ol BHE SAHEES o] §slo] Hu IH Qmﬂ 9 e
gt -AENE st B 9 HHA9] AN O @F R o] B
50009 VREFRO A JEE U] -39 MSE-F, ENC-NEW z;wxu REREES

3) 2 Aol At REAE H3 olololE Block bootstrapd 2 ThFE THE e
red ZAE AU 5 9lon] Tt REAEY A3 o] 2 AZEA Ay vl

FF AT B

4) ol&so] AV pi AICE ol 83te] st

r
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(Empirical distribution)& 51 p-#t& 78 5= k.5

|

V. FASOIE CISTHSMO| BE AEEN 2}

N

1. Xz

2 AFoME EE F7IETY olF AR A7 EY g7 de A
Hho] SR ARSShe S8 s AXNAARTER P8 ARE ol8Rith Z&
I(KOSPD) <& Hig=<E(Dividend vyield), ¥ig7}&H]E(Dividend-price
ratio), F7t°]Ju[E(Earnings-price ratio), 57 K=AH ] E{(Book-to-market ratio),
F7HHE/3(Stock variance)ol 3 Akg+= Hlo]E|7Io| EojlA AlSH AEE o851
™ ©7]0JARE, F7101ARE, AF-ECId FF A =(Default yield spread), 58] &
I =(Term spread), A& AXHE(Credit spread), ABIREZIAIS, AFGAPAIA] S
Y ArE2 =2 A AN LTS AR SHIT

B AT AFEA 717k B Ame W AT 4 7Rse 20009 109 319F
El 20174 12¥ 31971A)9] 7|7t &z ARG T8 B ZAAAl v o
< Z.

1. ©7]0]A&(Short-term interest rate)

. A710]AL(Long-term interest rate)

. AFEo|gY =oE AXFH =(Default yield spread)
2] 2T =(Term spread)

Al AT =(Credit spread)
QlZd|o|A(Inflation)

|
AFARYARR] S A& (Industrial production growth)

S~ NV N SUR

5) 2 ARl tigt p-g2 FEARERE 3P APAEY 2 FEAEH FYAE9| ¥
o

izt p-
&= 518 4 Qltk
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8. ¥ig7A4|E(Dividend-price ratio)

9. ¥ig==2E(Dividend yield)

10. F7o]|Yu]E(Earnings-price ratio)
11. 72 M18(Book-to-market ratio)

12. F7FA%A(Stock variance)

(Table 1) &} FACIE 39S W ANFANSES] Bt} BEUAE B
oI Gtk F7I01OJHE, FTRAMIIE, FTPASA S ARt RE W5 g

o HHER FIE}

:

(Table 1) Summary Statistics for Monthly Data

Variables Mean Standard Deviation
Excess stock return -2.537 6.451
Short-term interest rate 3.508 1.355
Long-term interest rate 4.086 1.487
Default yield spread 4.793 1.270
Term spread 0.579 0.680
Credit spread 0.504 0.548
Inflation 0.205 0.357
Industrial production growth 0.325 2.211
Dividend-price ratio 1.588 0.411
Dividend vyield 1.604 0.413
Earnings-price ratio 0.066 0.038
Book-to-market ratio 0.921 0.152
Stock variance 0.004 0.006

23} FASABL T2 o183 IR Brlol&0] o] Zguu, vy
Jol Bt g7l RS A E YE U AU L FUT A0 L
H122 A8 F71010IH S HUE Wrleo]ole ST APHEoI0R L 1
22 ABIIAOR TGS ARG A AL YL A7 0=

U Hee ARSI F7hEE e Iam Ao tid AlFdEa2E(Squared
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daily returns)?] gz SFH. @7|olkE2 79 oXR&S] H8A= AR E= 91
U= CDEEIE ARSI e A7 |oRe sEE w1 elE ARttt AlFE0]d
F4E AT EE 39 ] AA- SAEY =& BBB- SIAA] Q] Alol=, |F
AT e -] oXR&2] Aol =2, A& AL T AA- AR lE ATI0IRRE
of Apol= S5ttt IS o1 AR AFES 2BRETH SR AFAAY
AR ARER SPE

2. B2 U 657t Z™EZ1HIn-sample predictability)

WA £ AT EIIA (112 ol§5to] B2 1] SRAS o) T FANE
2018 A&7 AS AR (Table 29 (Table 3)-& 2 W ol&7154 4% 2
e HolFa ok WA AWAT FHE} vl 281749 AFE(Goodness
of fiE Lrebh R” 2l cl&¥i4:0] o2 Uehls 39] - AgA)E Solge] 4
7NE 24E o Z71ke AT UERRT Uk ol olgo] AA] WE 7hed o
7Rs4o] 27t0] B 7| Solge] wEAe] A2 24E o Sk izoletn &

Z> QItFama and French (1988)). WoF HEAE=o] ol HAEZQ] 9] A
A& A-8olH ©7]o|x&at A7|o|xRE, AFEo|Y el AUt Maes HE V7T

o X §oet S Lheh ik B 4 ik, T, REAEHS o83 X
EA2ES B9l AT pvalueS AR G0} 4701 BE GOI% of
212 204 3 20 Upehit), 193 AT Z2ukEat e 03] Hia w719
171 0183} 3709 Sol8S o5 4 Qi dlEusEe] o We R0 Uehgeh
g0l 405 And|Ee} F7kexbb] g 0] A9 1748 40153} 3742 Solge] o
o A57HEE foE suslelA] 712k Ao Urhith B3], kRIS
12719 4:0180] ol ARG S5 10%31oNA 712deke R0 Uehgeh
olQjole Hg7 AR &t Wil B 371 SrolEol Tl o5 suslelA] AR
42 7|7}, Flolelul &S 471solgel 247 40180 Thel Hokeg SvslolA
A57HEL 71248 He A0 btk

_l
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b, B2 Yl dlS7Msd A4 2 vlad @ ERl € elEolu 371d
g HisiiE AFEC1 ' AnH|E, FeAMIE, wig7Hvled vig=o]

E0| d58E 2= AR YEgeH, A7 ER] 2470 olEC] disirie 710

(Table 2) In-sample Predictability Test Results (1)

This table presents the in-sample regression results for Eq. (1). B and the t-statistic is

the slope coefficient estimate and the t-statistic for the given predictive variable. B2
is the goodness-of-fit measure for Eq. (1). The p-value is obtained through the

bootstrap procedure. Bold entries indicate significance at the 5% level.

Horizon 1 3 12 24
A. Short-term interest rate
B -1.561 -4.433 -13.127 -21.637
t-statistic -3.479 -3.573 -4.276 -4.416
[p-value] [1.000] [0.998] [0.993] [0.984]
R? 0.064 0.154 0.237 0.356
B. Long-term interest rates
B -1.112 -3.634 ~12.900 -21.752
t-statistic -2.521 -2.909 -3.718 -4.895
[p-value] [0.991] [0.987] [0.980] [0.981]
R? 0.038 0.118 0.248 0.366
C. Default yield spread
B 1.102 2.955 9.801 11.903
t-statistic 2.480 2.301 2.586 2.361
[p-value] [0.009] [0.031] [0.061] [0.119]
R? 0.037 0.086 0.148 0.137
D. Term spread
B 0.497 0.315 -3.630 -3.843
t-statistic 1.112 0.215 -0.609 -0.584
[p-value] [0.116] [0.379] [0.618] [0.587]
R? 0.014 0.026 0.022 0.017
E. Credit spread
B -0.085 1.038 4.890 7.014
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t-statistic -0.191 0.773 1.607 1.211
[p-value] [0.602] [0.280] [0.138] [0.246]
R? 0.008 0.033 0.041 0.057
F. Inflation
B -0.638 -1.443 -3.406 -3.590
t-statistic -1.457 -1.494 -1.810 -1.555
[p-valuel [0.925] [0.923] [0.958] [0.883]
R2 0.018 0.040 0.019 0.015

(Table 3) In-sample Predictability Test Results (2)

This table presents the in-sample regression results for Eq. (1). B and the t-statistic is

the slope coefficient estimate and the t-statistic for the given predictive variable. &>
is the goodness-of-fit measure for Eq. (1). The p-value is obtained through the

bootstrap procedure. Bold entries indicate significance at the 5% level.

Horizon 1 3 12 24
G. Industrial Production Growth
B 0.514 0.273 -2.593 -2.539
t-statistic 1.164 0.344 -1.597 -1.739
[p-value] [0.134] [0.368] [0.913] [0.914]
R? 0.015 0.025 0.011 0.008
H. Dividend-price ratio
B 0.652 2.410 6.493 2.470
t-statistic 1.455 2.466 1.961 0.359
[p-valuel [0.127] [0.044] [0.175] [0.588]
R? 0.018 0.069 0.008
I. Dividend yield
B 0.562 1.970 5.353 1.292
t-statistic 1.282 2.068 1.714 0.191
[p-valuel [0.112] [0.048] [0.113] [0.461]
R? 0.016 0.053 0.049 0.003
J. Barnings-price ratio
B 0.323 0.924 7.264 12.848
t-statistic 0.733 0.617 2.383 3.489
[p-valuel [0.253] [0.331] [0.064] [0.040]
R? 0.011 0.031 0.091 0.192

K. Book-to-market ratio
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B 1.405 4.501 11.874 9.606
t-statistic 3.216 3.391 2.934 1.243
[p-valuel [0.001] [0.009] [0.075] [0.392]
R? 0.056 0.169 0.232 0.098
L. Stock variance
B 0.241 1.161 -0.718 0.194
t-statistic 0.506 0.905 -0.127 0.022
[p-valuel [0.327] [0.250] [0.581] [0.564]
R? 0.009 0.033 0.001 0.001

3. B2 9| &7t HAM™ZAIHOut-of-sample predictability)

A BEFRZE S 20770019 B Aol B2 9 fS7RsA A4S SIvt 3 WA
7IZF R=120 0% 4HFITE6 (Table 4% (Table 5)t= A FAIAY 5018 57t
5ol et e 9] AHENE Uehia ok 9] Sokgel o) 7h oS

o] ZHe WSEL FAEA &3} B0l Holet, o] £ MAEL 77 170, 371
12719 52 24719 Selgol el MSE-F 24219} ENC-NEW A% 5% oz
596 olUjolA] HE7HEL 7121ekar itk B3] F7kerablee] 49 thahant ARt

481e] Theil's U-¥10] RE 7I712] 5:015o] ofe] 155} e 3 27 910w, 247)
4 Zeolgol TSI MSE-F #871] 39 R9kE 10% o oINE AR/HIE 71
st ek

ARG FFES 7158 2470Y 48] s Theil's U-HI&o] 150}

A3 MSE-F 4707k 215 5% ool Al 218t 274 tehfat %Ik ENC-NEW
HHA GOAEE 5% OTolA] SIS AT FO5ES 10%2 £ S A
A7) 2] 710t 8e chel o2 2k Siek e 4 gl

S5 W70l & 71012 ENC-NEW A7A]0] sl 2= 717t =&
gt AF7HEE el 5% olHiolA 718k . J1Euh, dii2e] A9 Theil's
U-BlE0] 15 23l 3L MSE-F ARAI7F B FoJ5HA] @it AlF2old & &

= E3F IR 0 g 371 =& His] ENC-NEW H8A7F ol

Ml

6) A WA BE7|7H] RS 110 &2 13002 A AFEA Ano] o deix|A|
01—1—{;].
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5% Oltoll A F-2I5HAINE Theil's U-H1&°] 18 23tokal MSE-F AAAI7F f-2l514] ¢
7] Wie]l F7101E dl&2o] il THsly| ofHe.

wEa], i 9] d&7ksA A AT F AT} Q15 olHo] A Tr]of A
F7HrelE tigt &3S 21 ok watEe, £5] SRS BE HHX
ofl tisl 7P frefst 22 9 F9ATE Uehia Qlck

(Table 4) Out-of-sample Predictability Test Results (1)

This table presents the out-of-sample regression results for Eq. (1). U ratio is the ratio
of the RMSE for the out-of-sample forecasts for the unrestricted model to the RMSE
for the restricted model. MSE-F and ENC-NEW are the out-of-sample statistics given
in Egs. (3) and (4). Bold entries indicate significance at the 5% level.

Horizon 1 3 12 24
A. Short-term interest rate
U ratio 1.042 1.087 0.950 0.899
MSE-F -6.911 -13.025 8.257 15.153
[p-value] [0.995] [0.979] [0.110] [0.113]
ENC-NEW 12.622 31.854 60.230 66.460
[p-value] [0.000] [0.000] [0.004] [0.015]
B. Long-term interest rates
U ratio 1.043 1.285 1.538 1.337
MSE-F -7.050 -33.530 -43.876 -28.207
[p-valuel [0.995] [1.000] [0.992] [0.881]
ENC-NEW 8.266 17.044 27.246 43.703
[p-valuel [0.000] [0.002] [0.029] [0.031]
C. Default yield spread
U ratio 1.011 1.021 1.210 1.061
MSE-F -1.967 -3.392 -24.124 -7.095
[p-valuel [0.825] [0.644] [0.873] [0.500]
ENC-NEW 4.981 11.846 9.906 13.490
[p-value] [0.004] [0.008] [0.122] [0.164]
D. Term spread
U ratio 1.029 1.016 0.948 0.983
MSE-F -4.790 -2.584 80520 2.186
[p-value] [0.986] [0.686] [0.088] [0.235]
ENC-NEW -1.173 -0.719 4.738 1.538
[p-valuel [0.967] [0.665] [0.157] [0.314]
E. Credit spread
U ratio 1.001 1.047 1.154 1.272
MSE-F -0.114 -7.484 -18.971 -24.417

[p-value] [0.268] [0.942] [0.944] [0.941]
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ENC-NEW -0.056 -3.068 -7.185 -10.193
[p-value] [0.405] [0.972] [0.970] [0.987]
F. Inflation
U ratio 0.986 1.038 0.960 0.976
MSE-F 2.491 -6.119 6.382 3.139
[p-valuel [0.022] [0.991] [0.001] [0.015]
ENC-NEW 2.472 -0.718 4.116 1.670
[p-valuel [0.016] [0.878] [0.003] [0.041]

(Table 5) Out-of-sample Predictability Test Results (2)

This table presents the out-of-sample regression results for Eq. (1). U ratio is the ratio
of the RMSE for the out-of-sample forecasts for the unrestricted model to the RMSE
for the restricted model. MSE-F and ENC-NEW are the out-of-sample statistics given
in Egs. (3) and (4). Bold entries indicate significance at the 5% level.

Horizon 1 3 12 24
G. Industrial Production Growth
U ratio 1.016 1.015 0.996 0.988
MSE-F -2.655 -2.482 0.649 1.581
[p-value] [0.948] [0.928] [0.130] [0.042]
ENC-NEW -0.485 -1.015 1.021 0.937
[p-value] [0.844] [0.958] [0.076] [0.075]
H. Dividend-price ratio
U ratio 1.052 1.216 1.502 1.583
MSE-F -8.451 -27.475 -42.298 -38.450
[p-value] [0.998] [1.000] [0.997] [0.983]
ENC-NEW -1.248 -2.725 -3.620 -9.328
[p-valuel [0.967] [0.942] [0.818] [0.963]
I. Dividend yield
U ratio 1.050 1.185 1.462 1.536
MSE-F -8.069 -24.502 -40.466 -36.877
[p-value] [0.999] [1.000] [0.993] [0.977]
ENC-NEW -1.315 -2.802 -3.705 -8.818
[p-valuel [0.978] [0.962] [0.833] [0.961]
J. Earnings-price ratio
U ratio 1.000 0.998 1.039 1.050
MSE-F -0.002 0.331 -5.572 -5.967
[p-value] [0.232] [0.213] [0.635] [0.627]
ENC-NEW 0.044 0.296 -0.952 -0.528

[p-valuel [0.340] [0.313] [0.556] [0.528]
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K. Book-to-market ratio

U ratio 0.956 0.879 0.663 0.884
MSE-F 8.193 24.950 96.923 17.864
[p-value] [0.000] [0.0001 [0.0001 [0.057]
ENC-NEW 6.179 21.574 65.283 10.011
[p-value] [0.000] [0.000] [0.000] [0.110]
L. Stock variance
U ratio 1.012 1.063 1.021 1.079
MSE-F -1.972 -9.757 -3.111 -9.061
[p-valuel [0.865] [0.979] [0.672] [0.866]
ENC-NEW -0.755 -3.547 -1.372 -4.054
[p-valuel [0.907] [0.993] [0.777] [0.938]
V. 88
2 AoM= 12719 8 F88H5e} AXNBARSTES ol8sto] = ARG
(KOSPDY] 4=2}& dl&71s/d< ARt ¥ A=E vle= 1714, 3714, 1271
3 274 7 5018 oETHe RS AEIo] 2 ML) AR Fa501E

&S F7goct. 53], APATlA gol AmEgtd #E W &7k A7l A
oA dofd 4= Q= TAIRI AHE AR} A VIS BAIE Hasfelr] fl8) REAE
2 B¢ AREFEE 53 AL p-valueE F5to] BAA FES AlBEIA oA,
F2ol Ak BA A7718 MSE-F A2} ENC-NEW HEXE AR&sto] 12 9]

A&7Fs78S Bt AdsHA st
i Y 57143 A4 AR @780 tisiA AFEo]Y 018 Axgsel
7WeApAEE, g7, HigelEo] RORt SUIRAE d5Ee 2 2R U
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S TR 0 E A&7 ol IRE ERIA 2 AR 7)o TRt 58
T2 AXBARPEY] 58S A A EJ = ook, =Y, oA of= 7 ¥
T2 A9 28T 1 Foster et al. (1997)3 Ferson et al. (2003)°] A|&51%50]
AR 2 Aol dlolH Hteld wAIZE AT o217} Tk HlolE mlold EAle B

9] SHFES] HF S AvE o) 01 AR Fo44E 2= TR vt
408 Hugowx WAsk=t], §3] vlssiAY S5 #2717 ANk #7
W A7ollA Aatel= Zos dEA QU & Aok xRl AMSE 4= Q= E
B 9] AA71HE I 2830z H o] ZAE HAslel] 9l oo, dlolE ut
ojd #AIE AFA = AT 4 U= SAA 7IH2 A8 ERltke HolAd a4
T} sfAo]l ol TR Sl HlolH Hield ZAIE 2K A & e AR E
= Foster et al. (1997)0l4 AHHE 0] Maximum statisticsE ©-83 4= 9l.oH, o]

of et A7 o] ATTAR WRlck
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Abstract

This study evaluates the predictive power of 12 financial and
macroeconomic variables for Korean stock market returns of different
horizons. Both the return predictability of in-sample and out-of-sample tests
are considered to examine each variable’s predictive ability more robustly. For
this purpose, this article employs the MSE-F statistic developed by McCracken
(2007) and the ENC-NEW statistic developed by Clark and McCracken (2001)
to compare nested forecast models. In addition, the bootstrapping procedure
is applied for both in-sample and out-of-sample inferences to address the
finite-sample bias and the autocorrelated disturbances from overlapping
observations. As a result, the book-to-market ratio variable is found to be the
most consistent and significant predictor as it rejects the null of no

predictability for both in-sample and out-of-sample tests.

% Key words: Stock Market Return predictability, Macroeconomic variables,
Financial variables, In-sample predictability, Out-of-sample

predictability
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. Introduction

Prior research has studied the effect of volatility persistence and changing
equity premium in the stock market (Harris (1986); Karpoff (1987); Lamoureux
and Lastrapes (1994); Chou (1988)). For example, Chou (1988) uses a
univariate GARCH-M model to study stock return volatility persistence and its
relationship with market fluctuations. The parameter estimates and the
non-stationary test results suggest high persistence of shocks to the stock
return. It is argued that shocks to volatility have to persist for a very long time
in order for volatility to have a significant impact on stock prices. While
volatility persistence in stock market is well documented by prior literature,
the asymmetric impact of negative and positive shocks on stock return
volatility, is not well understood.

To allow for possible asymmetry in the impact of good and bad news, I use
the EGARCH (1,1)-M model. EGARCH has two advantages over GARCH. First,
by using the exponential formulation, the restrictions of positive constraints
on the estimated coefficients in ARCH and GARCH are no longer necessary.
Second, a weakness of the GARCH model is that the conditional variance
depends on the magnitude of the disturbance term, but not its sign. GARCH
fails to capture the negative asymmetry apparent in many financial time
series. The EGARCH model lessens this problem by modeling the standardized
residual as a moving average (MA) regressor in the variance equation while
preserving the estimation of the magnitude effect. This is potentially
important as, ever since Black (1976), researchers have been aware of the
possibility that the effect of shocks on the conditional volatility may depend
on their sign. I therefore use EGARCH model to test if there is an uneven but

persistent flow of information to stock market.
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Glosten, Jagannathan, and Runkle (1993) use GJR-GARCH model to capture the
asymmetric impacts of negative and positive shocks. This paper differs in that I
use an EGARCH model to study the persistence of volatility after incorporating
the trading volume effects, which are proxies for information flow. One of the
main advantages of EGARCH is that it models logarithm of volatility. Therefore,
during the estimation, there is no need for parameter restrictions. On the
contrary, when estimating a GJR-GARCH model, it is common that alpha and
beta are restricted by the estimation procedure to be larger than zero. No such a
restriction is needed in the EGARCH model. EGARCH model best fit this paper by
accommodating volatility persistence and leverage effect.

Secondly, according to the Mixture of Distribution hypothesis,)) price
volatility and trading volume should be positively correlated because they
jointly depend on a common underlying variable. This variable could be
interpreted as the rate of information flow to the market. In other words, both
the price and trading volume change contemporaneously in response to new
information. To investigate the hypothesis that the flow of information to the
market helps explain the volatility of returns, I use trading volume as a proxy
for information innovations. To do this, I introduce detrended trading volume
into the standard EGARCH model and examine if the positive relationship
exists. In addition to study the relation between trading volume and
conditional volatility, I use Granger causality test to examine the casual

relation between trading volume and price changes (return).

1) The mixture of distribution hypothesis model presented in the seminal paper
of Tauchen and Pitts (1983) offers an appealing explanation for the positive
relation between trading volume and volatility of returns. In their specification,
the information flow is the unobserved mixing variable responsible for moving
both volumes and volatility. In this study, I analyze trading volume as
information flows. The separation between volume and volatility implies an
asymmetric behavior in stock prices and a leverage effect depending on
unexpected trading volume.
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Chiang, Qiao, and Wong (2010) find strong bi-directional nonlinear Granger
causality between volume and volatility. Day and Lewis (1992), using S&P 100
index options, find that the implied volatility contains useful information in
forecasting volatility for both EGARCH and GARCH models. This paper differs
in that I study the dynamic relationship between return, volume, and volatility
using a trading volume-augmented EGARCH model. Additionally, I use volume
as a proxy for information arrival to examine if a positive or negative
relationship exist between volume and stock return volatility.

The paper makes several contributions to the existing literature. First, using
daily NYSE index data, I use exponential GARCH (EGARCH) model allow for
asymmetry in the volatility, which may be present as a result of leverage
effects.2) Second, I respond to evidence of two-way causality between volume
and return (and return volatility) by introducing trading volume as an
exogenous variable into the standard EGARCH(1,1) model. My results suggest
the existence of asymmetry effect and the impact on volatility of a negative
shock is greater than that of a positive shock. 1 find that trading volume
contributes some information to the returns process. The results also show
persistence in volatility even after I incorporate contemporaneous and lagged
volume effects. Granger causality test indicates stronger evidence of return

causing volume than volume causing return.

2) In a financial market, if bad news has a more pronounced effect on volatility
than good news of the same magnitude, such asymmetry has typically been
attributed as Leverage effect, and then the symmetric specification such as
GARCH is not appropriate and could not capture the asymmetric effect, since
the GARCH model assumes same effect for good and bad news. But, the fact
of financial volatility is that negative shocks tend to have larger impact on
volatility than positive shocks. The main drawback of the symmetric GARCH
model is that the conditional variance is unable to respond asymmetrically to
rise and fall in the stock returns. Hence to examine the asymmetric effect of
the financial time series data, I use an Exponential GARCH (EGARCH) model in
order to account for the leverage effect observed in return series of stocks.
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[l. Data

The data used in the paper are daily NYSE value-weighted price index and
trading volume series from July 1, 1990 to Dec. 31, 2013. Following Chou
(1988), the daily stock returns are calculated as the logarithmic first difference
of the price index. I add volume series to the original dataset. The volume
data are collected from Standard and Poor’s. Standard & Poor’s Statistical
Service: Security Price Index Record reports daily NYSE share trading volume.
My sample does not include dates when trading volume is not available. I

match all series of indexes and trading volume.

(Table 1) Variables Definitions

Sample Period,

Series Description (Source) Size

Daily returns of NYSE value-weighted index 7/1990-12/2013

R, (CRSP, R, =(Inp,—Inp,_,)*100 where p, is the
) L ) T=5903
stock index price in period t)
H NYSE daily raw trading volume (Standard & Poor’s 7/1990-12/2013
t Statistical Service: security Price Index Record) T=5903
h Detrended NYSE trading volume (the detrend 7/1990-12/2013

t method is addressed in section 3) T=5903
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il. Methodology

1. EGARCH modeling:

GARCH(1,1)-M provides a good technique in estimating the persistence of
volatility of stock returns, however, it does not consider the asymmetric
impact of shocks on volatility. I use the EGARCH(1,1)-M estimation technique.
EGARCH has two well-known advantages over GARCH. First, no parameter
restrictions are needed to ensure that the implied conditional variance of the
return is always positive. Second, it allows for possible asymmetry in the
impact of good and bad news respectively. I will therefore use
AR(1)-EGARCH(1,1)-M model to see if there is an uneven but persistent flow of

information to stock market. The EGARCH specification is as the follows:

R =r+0R_,+e withe |I_, ~N(OV,)
(D

IV, =« +a(\/\%)+y(|\/\%§—u)+ﬂ(lnvt_l)

& |)=(%)°'5 ( for a normal distribution)

where u=E(|

t-1

In the above formulation, persistence of volatility is measured by 8. The
asymmetric effect of negative and positive shocks is captured by ¢ and 7. «
measures the sign effect and 7 measures the size effect. We expect to find y >
0, implying that shocks of above-average size (in absolute terms) increase
volatility, other things being equal. If -1 < <0, the impact on volatility of a
negative shock is greater than that of a positive shock. If ¢ <-1, a positive
shock actually reduces volatility, while a negative shock causes it to increase.

Either result could be attributed to a leverage effect, according to which
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negative shocks have a magnified impact on stock values because they reduce
the value of equity relative to debt and thereby increase the risk to equity
holders. Therefore, I will use EGARCH to estimate the parameters e, 8 and 7,

testing their magnitude as well as signs.

2. Examine the dynamic relationship between return, volume
and volatility of stock indexes:

The Mixture of Distribution hypothesis predicts a positive relationship
between price volatility and trading volume because they jointly depend on a
common underlying variable. This variable could be interpreted as the rate of
information flow to the market. Furthermore, the volatility persistence should
become negligible if volume is serially correlated and is a good proxy for the
flow of information to the market. To test this hypothesis, I introduce
detrended trading volume into my EGARCH model and examine if the positive
relationship exists. In addition to study the relation between trading volume
and conditional volatility, it would be interesting to check if volatility
persistence will be reduced as a result of this introduction. My estimation steps

are as the follows:

Step 1: Trend and Unit Root Tests:

I use daily NYSE price index and trading volume series from July 1990 to
Dec. 2013 obtained from CRSP and S&P. Trend stationary in trading volume is
tested by regressing the series on deterministic function of time. To allow for a

nonlinear time trend and a linear trend, I include a quadratic trend term:

H =a+Bt+ Bt +é )
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Where H: is the raw trading volume. Here I use trading volume adjusted for
both linear and nonlinear time trends. The detrended trading volumes are the
residuals from the above regression.

To test for a unit root of the return and detrended trading volume series, I
employ both the augmented Dickey-Fuller (D-F) test (1979) and the
Phillips-Perron (P-P) test (1988). The difference between the two unit root
tests lies in their treatment of any ‘nuisance’ serial correlation. The P-P test
tends to be more robust to a wide range of serial correlations and
time-dependent heteroskedasticity. In these tests, the null hypothesis is that a
series is nonstationary (i.e., difference stationary): o =0 and @ = 1:

ADF:  AX = py+p X1+ zé}xt—i T & 3)

i=1

Phillips-Perron: X, = o, + a X, , +, 4)

Where X. is the return or detrended trading volume. The lag length in the

ADF and (P-P) regression is chosen by Akaike’s information criteria (AIC).

Step 2: Trading Volume and stock price changes (return)

To examine the contemporaneous correlation between detrended trading
volume and stock return, I run the following regressions using two alternative

forms of price change (return):

h,=a+bR, +u,
h,=a+b|R |+, ®)

By examining the coefficient, results will tell me whether there is a positive

contemporaneous returns-volume relation fit the data.
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Step 3: Causal relation between detrended trading volume and

stock price changes (return)

To test whether trading volume precedes stock returns, or vice versa. I use
the causality test in Granger (1969). I use the following bivariate
autoregressions to test for causality between the two variables detrended

trading volume and stock returns:

5 5
h=a,+ Zlozihtfi + Zﬁth—j
izl -1 ©)

5 5
Ro=a,+ Y 7R+ 0h

i-1 j=1

Where h; is detrended trading volume and Rt is return at time t. For the
estimation of the vector autoregression (VAR), I use five lags based on both the
Akaike information criterion (AIC) and the Schwarz criterion. These lags
amount to allowing for week-long information in the regression.

If the B; coefficients are statistically significant, then including both past
values of return and past history of volume yields a better forecast of future
volume. Therefore, returns cause volume. If a standard F-test does not reject
the hypothesis that 8; =0 for all j, then returns do not cause volume. If
causality runs from volume to returns, then the §; coefficients will jointly be
different from zero. If both 8 and ¢ are different from zero, there is a

feedback relation between returns and trading volume.

Step 4: Detrended trading volume and conditional volatility in
the EGARCH model:

To examine the hypothesis that the flow of information to the market helps
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explain the volatility of returns, I use trading volume as a proxy for
information innovations. I choose daily trading volume as a measure of the
amount of daily information that flows into the market. The following

AR(1)-EGARCH(1,1)-M model is extended with detrended trading volume:

R =r +0R_ +e withe |l ~N(OV,)

e, e
InV, =, + a(—==) + y (== — 1) + f(InV,_,) + Ah_
t o B ‘\/E‘ t-1 k1 @)
where 1 =E(| \/etT )= (%)"'5 (for a normal distribution)
t-1

Where in the conditional variance equation above, I use the lagged
detrended trading volume hi1 as an instrument for contemporaneous volume
to avoid the problem of simultaneity since lagged values of endogenous
variables are classified as predetermined.

The mixture of distribution hypothesis predicts that 4> 0. Furthermore, in
the presence of volume with A >0, if daily volume is serially correlated, 8 will
be small and statistically insignificant. The persistence of variance as
measured by £ should become negligible if volume is serially correlated and is
a good proxy for the flow of information to the market. However, in the case
where trading activity does not fully capture the rate of information arrival
and other exogenous directing variables affect the variance equation, EGARCH

effects, although reduced, will remain.
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IV. Results

1. Trend and unit root tests:

Table 2 presents the basic statistics for the NYSE stock index returns and
raw daily trading volume. Return is defined as log differences of the index
levels. As can be seen the return series is positively skewed and leptokurtic
compared to the normal distribution. Although the skewness statistics are not
large, the positive skewness of the return series implies a higher probability of
earning positive returns. The kurtosis value is larger than three and implies
that the distribution of returns have fat tails compared with the normal
distribution. The Ljung-Box Q(36) statistic for 36th order autocorrelation is

statistically significant, while the Ljung-Box test statistic Q*36) (for the

squared data) indicates the presence of conditional heteroskedasticity.

(Table 2) Summary Statistics of Daily Stock Index Returns and Raw Trading Volume:

1990.07~2013.12 (N=5903)

NYSE stock index returns NYSE raw trading volume
(million)
Mean 0.039485 29.753
Median 0.051 16.830
Maximum 5.070 236.565
Minimum -3.859 0.337
Std. Dev 0.775 30.857
Skewness 0.177 1.805
Kurtosis 5.683 6.062
Jarque-Bera 1800.566* 5509.846*
Ljung-Box Q(36) 346.55* 171287*
Ljung-Box Q*(36) 4182.2* 116725

Note: stock return is calculated as R=(InP-InP.-1)*100 where P, is the stock index price in

period t.

* indicates statistical significance at 1% level.
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Previous studies report strong evidence of both linear and nonlinear time
trends in trading volume series (e.g., Gallant, Rossi and Tauchen, 1992). As
such, trend stationarity in trading volume is tested by regressing the series on
a deterministic function of time. To allow for a nonlinear time trend as well as
a linear trend, I include a quadratic time trend term:

To test for a unit root (or the difference stationary process), I employ both
the augmented Dickey-Fuller (D-F) test (1979) and the Phillips-Perron (P-P)
test (1988). The P-P test tends to be more robust to a wide range of serial
correlations and time-dependent heteroskedasticity. In these tests, the null
hypothesis is that a series is nonstationary (i.e., difference stationary): p = 0
and @ = 1 (see Table 3) respectively.

Test results are reported in Table 3. Panel A of Table 3 shows that the
coefficients (with t-ratios in parentheses) of regressing trading volumes on a
linear time trend alone. When a quadratic time trend term is added, the
coefficients are very significant and the model fit is high. Therefore, I use
trading volume adjusted for both linear and nonlinear trends for all volume.

Panel B of Table 3 shows that the null hypothesis that the stock return series
and detrended trading volume series are nonstationary (i.e., have a unit root)
is strongly rejected whether we allow for three lags or seven lags. This
confirms that detrended trading volume and stock return series are both
stationary, and we do not have to consider the possible cointegration problem
associated with these variables. The lag length in the ADF and (P-P) regression

is chosen by Akaike’s information criteria (AIC).



(Table 3) Tests of Stock Returns and Trading Volume

Stock Return, Volume and Volatility in the EGARCH model

Panel A: Linear and nonlinear trend tests in trading volume

H =a+Bt+ Bt +¢

(Where Ht is the raw trading volume)

« B By R?
1990.07~ -13.746 0.015 0.662
2013.12 (-29.444)* (107.585)*
15.801 -0.015 5.09E-06 0.846
(33.353)* (-41.247)* (83.662)*

Panel B: Unit root tests for stock returns and detrended trading volume

(a) Augmented Dickey-Fuller

regression:

AX =py+ o X+ zé‘ixtfi +&

i=1

(b) Phillips-Perron regression:

X =0, +aX  +4,
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Variable(X,) Lags(k) 7(p) Lags(k) Z(ra)
Return(Z,) 3 -63.210* 3 -61.310*
Detrended 7 -38.553* 7 -28.670*
volume(h,)

Note: Numbers in parentheses are r-statistics.
* denotes significant at the 1% level.

2. Trading Volume and stock price changes (return)

To examine the contemporaneous returns-volume relations, I regress
detrended trading volume on returns as well as absolute stock returns. Table 4
shows the results of these regressions, where the dependent variable (h,) is
detrended trading volume and independent variable is the natural logarithm of
the price relative or its absolute value. The results suggest a positive
contemporaneous relation between volume and return during July 1990-Dec.

2013. In panel A and B, the coefficients are statistically significant at 1% level.
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(Table 4) Contemporaneous Relationship between Daily Trading Volume
and Stock Returns

Panel A: Regression of detrended daily trading volume on stock returns
h, =a+bR, + u,

a b R,
Detrended volume(h,) (:8225) (1?222)* 0.022

Panel B: Regression of detrended daily trading volume on absolute stock returns
h, = a+b|R|+u,

a b Rg
Detrended volume(h,) (_'71 572230)+ (1?). (;41(;)* 0.018

Note: Numbers in parentheses are statistics.
* denotes significant at the 1% level.

3. Causal relation between detrended trading volume and
stock price changes (return)

Table 5 presents the causal relation test on the bivariate vector
autoregression (VAR) model discussed in equation (6) of section 3. Panel A
shows the results of the test of the null hypothesis that returns do not
Granger-cause volume. The F-statistic is significant at the 1% level for both
the full and sub-sample periods. Thus we reject the null hypothesis and find
strong evidence for stock return causing trading volume. Panel B shows that in
the test of the null hypothesis, volume does not Granger-cause returns. The
F-statistics is significant at 10% level for the sub-sample period July
1990-Dec.2001. For other periods the F-statistics is insignificant. In addition,
in Panel B all adjusted R* values are very low, which indicates volume may
have little predictive power for future returns. Overall, Granger causality tests
demonstrate stronger evidence of returns causing volume than volume causing

returns.
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(Table 5) Granger Causality Tests Return and Detrended Volume

Panel A: Panel B:
Tests of causality from returns to volume: | Tests of causality from volume to return:
5 5 5 5
h =a, +zaiht—i +Zﬂth—j + &y Ri=a, + zyilei +Z:5jhtfj T &x
i=1 j=1 i=1 j=1
July 1990~ | July 1990 |Jan. 2002- July 1990~ | July 1990 |Jan. 2002-
Dec. 2013 | -Dec.2001 | Dec.2013 Dec. 2013 | -Dec.2001 | Dec.2013
o 0.001 0.001 0.001 a 0.031 0.022 0.040
0.433) | (0.442) | (0.203) (3.131)* | (1.864)*** | (2.549)*
ay -0.419 -0.386 -0.437 o0 0.226 0.289 0.194
(-31.547)*| (-20.222)* | (-23.556)* (16.991)* | (15.121)* | (10.397)*
Q, -0.393 -0.378 -0.404 Yo -0.045 -0.084 -0.026
(-27.661)* | (-18.706)* | (-20.236)* (-3.265)* | (-4.246)* | (-1.378)
Qg -0.288 -0.275 -0.297 s 0.023 0.036 0.022
(-19.584)* | (-13.162)* | (-14.394)* (1.661)** | (1.798)y** | (1.146)
oy -0.153 -0.136 -0.163 Y4 -0.005 0.021 -0.026
(-10.862)*| (-6.751)* | (-8.259)* (-0.373) | (1.044) | (-1.370)
ay -0.026 -0.064 -0.001 s -0.001 0.005 -0.005
(-1.978)** | (-3.409)* | (-0.074) (-0.046) | (0.022) | (-0.285)
5, 0.0311 0.010 0.042 0, 0.007 -0.027 0.036
(10.386)* | (1.954)y"** | (11.051)* (0.125) | (-0.369) | (0.392)
B -0.015 -0.011 -0.017 0y 0.118 0.196 0.046
(-4.956)* | (-2.068)** | (-4.228)* (1.870y* | (2.500)* | (0.473)
By 0.012 | 0015 | 0010 8, 0.090 | 0036 | 0135
(3.724)* | (2.961)* | (2.646)* (1.373) | (0.445) | (1.346)
0, -0.008 -0.016 -0.005 Oy 0.073 0.007 0.122
(-2.675)* | (-3.042)* | (-1.236) (1.159) | (0.090) | (1.274)
B4 -0.013 -0.002 -0.019 05 0.141 0.120 0.159
(-4.342)* | (-0.349) | (-4.974)* (2.409)* | (1.639) |(1.788)***
F-statistics| 30.615* 3.836* | 32.7558* | F-statistics| 1.628 |2.17145**| 0.81534
[0.0000] | [0.0018] | [0.0000] [0.1490] | [0.0546] | [0.5385]
Adjusted 0.501 0.478 0.529 Adjusted 0.051 0.081 0.039
R-square R-square

Note: t-statistics are in parentheses and p-values are in brackets.
* * and *** indicates statistical significance at the 1%, 5% and 10% level respectively.
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Panel A of Table 6 reports the results of the EGARCH model in equation (1)
of section 3. The parameter estimates are obtained by maximizing the
log-likelihood using the Berndt, Hall, Hall, and Hausman (1974) algorithm. The
estimation results demonstrate, first, the volatility persistence, measured by 8,
is high but less than one indicating high but stationary persistence. Second,
asymmetry is present since e is found to be statistically significant. Since -1 <
@ <0, the impact on volatility of a negative shock is greater than that of a
positive shock. As far as the effect of shocks on the variance is concerned,
notice that all the y are positive and significant, as we should expect, implying
that above-average shocks increase conditional volatility, other things being
equal. Third, as a model specification test the Ljung-Box statistics for 26
order serial correlation in the level and squared standardized residuals are
reported. Both Ljung-Box statistics indicate that the residuals do not show any
significant serial correlation. Thus, the estimated models fit the data well.
Finally, the log-likelihood statistics are very large. This result implies that the
EGARCH model is an attractive representation of daily return behavior that
successfully captures the temporal dependence of return volatility. Likelihood
ratio test between EGARCH models and their conventional Gaussian
counterparts is also reported in Table 6. It demonstrates that an EGARCH
model specification is more fit in the sample data than GARCH model under
student-t distribution.

The results when trading volume is included in the conditional variance of
EGARCH(1,1)-M model are reported in Panel B of Table 6. Various points can
be made. First, the coefficient of lagged trading volume is positive and
statistically significant, which is consistent with the predications of the
mixture of distribution hypothesis. The significant coefficient on volume

indicates that volume is an exogenous variable in the system, and there is a
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positive association between return variance and lagged trading volume.
Second, the EGARCH effect remains when lagged volume is included in the
model. However, the persistence in volatility as measured by A8 is marginally
smaller when we do so. Trading volume as a proxy for information innovations
does not reduce the importance of 8 in explaining persistence in volatility of
stock returns. The results suggest that volume provides information about the
quality of information signals, rather than representing the information signal

itself.

V. Conclusion

I use EGARCH(1,1)-M model to study the asymmetric impact of negative and
positive shocks on stock return volatility. The results suggest that the EGARCH
models reflect an appropriate representation of the returns in stock index
data. Asymmetric effects exist and the impact on volatility of a negative shock
is greater than that of a positive shock. Furthermore, the EGARCH model is
extended with trading volume to examine the dynamic relationship between
returns, volume and volatility of stock index. The results indicate that trading
volume contributes some information to the returns processes of stock
indexes. However, the persistence of volatility remains even after
incorporating lagged volume effects, which are proxies for information flow.
Granger causality tests demonstrate stronger evidence of returns causing
volume than volume causing returns.

Additional work could be done to test whether the effect of trading volume
on volatility is homogeneous by separating volume into its expected and

unexpected components and allowing each component to have a separate
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effect on observed price volatility. By examining whether the expected and
unexpended components of trading volume have different effects on the
conditional variance, more can be learned about the stock market through the

dynamics of returns and volume.
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